Skip to main content
Log in

Effect of the granulometric properties of metallic scandium powder on its conductivity

  • Experimental Instruments and Techniques
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of the granulometric properties of powdered metal on the density dependence of its conductivity is studied by the example of metallic scandium. It is found that a decrease in the grain size leads to an increase in the compression force necessary to rupture oxide films at the sites of grain contact and thereby carry the powder to the conducting state. It is shown that this force correlates with the content of scandium oxide forming a film on the grain surface. When the grain size range expands, the conductivity critical index decreases substantially because of an increase in the density of a conducting percolation cluster formed by the contacting metallic bases of the grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porous Permeable Materials: A Handbook, S. V. Belov, Ed. (Metallurgiya, Moscow, 1987), p. 77; p. 173 [in Russian].

    Google Scholar 

  2. V. I. Odelevskiĭ, Zh. Tekh. Fiz. 21, 667 (1951).

    Google Scholar 

  3. M. Yu. Balshin, Fundamentals of Powder and Fiber Metallurgy (Metallurgiya, Moscow, 1972), pp. 93–97 [in Russian].

    Google Scholar 

  4. G. N. Dulnev and Yu. P. Zarichnyak, Heat Conduction in Mixtures and Composite Materials (Énergiya, Leningrad, 1974), pp. 76–89 [in Russian].

    Google Scholar 

  5. L. Reinhold, G. Leuenberger, S. Makarov, et al., J. Nondestruct. Eval. 21, 1 (2002).

    Article  Google Scholar 

  6. A. Simchi, H. Danninger, and B. Weiss, Powder Metall. 43, 219 (2000).

    Article  Google Scholar 

  7. V. V. Mokrushin, in Proceedings of the All-Russia Conference on Combustion and Explosion in Physical Chemistry and Technology of Inorganic Materials, ISMAN, Chernogolovka, 2002, pp. 268–274.

  8. D. M. Kalyon, E. Birinci, and R. Yazici, Polym. Eng. Sci. 42, 1609 (2002).

    Article  Google Scholar 

  9. I. É. Graboi, A. P. Mozhaev, and Yu. D. Tret’yakov, Izv. Akad. Nauk SSSR, Neorg. Mater. 27, 870 (1991).

    Google Scholar 

  10. Yu. V. Frolov and A. N. Pivkina, Fiz. Goreniya Vzryva 33(5), 3 (1997).

    Google Scholar 

  11. A. N. Emel’yanov, V. M. Shkiro, A. S. Rogachev, et al., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 2, 67 (2002).

  12. A. Yu. Dovzhenko and V. A. Bunin, Zh. Tekh. Fiz. 73(8), 123 (2003) [Tech. Phys. 48, 1058 (2003)].

    Google Scholar 

  13. V. V. Mokrushin, Dokl. Akad. Nauk 357, 332 (1997) [Dokl. Phys. 357, 209 (1997)].

    Google Scholar 

  14. N. A. Kochetov, A. S. Rogachev, A. N. Emel’yanov, et al., Fiz. Goreniya Vzryva 40(5), 74 (2004).

    Google Scholar 

  15. V. V. Mokrushin and P. G. Berezhko, Dokl. Akad. Nauk 368, 470 (1999) [Dokl. Phys. 44, 656 (1999)].

    Google Scholar 

  16. Yu. A. Kovalenko, V. A. Gruzdev, and Yu. A. Vesloguzov, Teplofiz. Vys. Temp. 33, 373 (1995).

    Google Scholar 

  17. A. B. Khanikaev, A. B. Granovskiĭ, and Zh.-P. Klerk, Fiz. Tverd. Tela (St. Petersburg) 44, 1537 (2002) [Phys. Solid State 44, 1611 (2002)].

    Google Scholar 

  18. V. V. Vysotskiĭ and A. V. Zemtsov, Materialovedenie, No. 9, 29 (2003).

  19. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984), pp. 166–174.

    Google Scholar 

  20. A. L. Efros, Physics and Geometry of Disorder (Nauka, Moscow, 1982), pp. 145–148 [in Russian].

    Google Scholar 

  21. V. A. Sotskov, Zh. Tekh. Fiz. 74(11), 107 (2004) [Tech. Phys. 49, 1501 (2004)].

    MathSciNet  Google Scholar 

  22. V. V. Mokrushin, Preprint No. 59-96 IPK RFYaTs-VNI-IEF (Russian Federal Nuclear Center, All-Russia Research Institute of Experimental Physics (VNIIEF), Sarov, 1996).

  23. L. N. Komissarova, in Encyclopedia of Chemistry, N. S. Zefirov, Ed. (BRE, Moscow, 1995), Vol. 4, pp. 359–360.

    Google Scholar 

  24. P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, New York, 1972; Mir, Moscow, 1975), p. 283.

    Google Scholar 

  25. E. I. Andrianov, in Methods for Determination of Structural and Mechanical Characteristics of Powders (Khimiya, Moscow, 1982), pp. 131–137.

    Google Scholar 

  26. V. V. Mokrushin, P. G. Berezhko, V. V. Yaroshenko, et al., Inventor’s Certificate No. 1598600 (1999), Byull. Izobret., No. 23 (1999).

  27. G. M. Zhdanovich, Theory of Metal Powder Compaction (Metallurgiya, Moscow, 1969), pp. 11–17 [in Russian].

    Google Scholar 

  28. Yu. G. Dorofeev, E. N. Bezborodov, and S. N. Sergeenko, Tsvetn. Metal., No. 1, 81 (2003).

  29. I. M. Sokolov, Usp. Fiz. Nauk 150, 233 (1986) [Sov. Phys. Usp. 29, 924 (1986)].

    Google Scholar 

  30. A. Yu. Dovzhenko and P. V. Zhirkov, Zh. Tekh. Fiz. 65(10), 201 (1995) [Tech. Phys. 40, 1087 (1995)].

    Google Scholar 

  31. V. V. Kafarov, I. N. Dorokhov, and S. Yu. Arutyunov, in System Analysis in Chemical Technology: Powdering and Mixing of Materials (Nauka, Moscow, 1985), pp. 234–238 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Tsarev, V.V. Mokrushin, 2007, published in Zhurnal Tekhnicheskoĭ Fiziki, 2007, Vol. 77, No. 3, pp. 80–86.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsarev, M.V., Mokrushin, V.V. Effect of the granulometric properties of metallic scandium powder on its conductivity. Tech. Phys. 52, 369–375 (2007). https://doi.org/10.1134/S1063784207030152

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784207030152

PACS numbers

Navigation