Skip to main content
Log in

Smooth analog of standard mapping

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Twenty years ago Bullett [1] published an article [1] where he found the invariant curves of standard mapping, having replaced the sinusoidal force by its smooth analog, a piecewise linear saw. His studies discovered an unexpected effect: at certain values of the perturbation parameter, unsplit separatrices of integer and fractional resonances arise among global invariant curves, while chaotic layers, which are usually attendant to these separatrices, are absent. Interestingly, the system remains nonintegrable in this case and the separatrices persist, confining momentum global diffusion under the condition of strong local chaos. For reasons not well understood, this important effect and its consequences had gone largely unnoticed until Ovsyannikov [2] independently proved a similar theorem for integer resonances in terms of the same model of symmetric piecewise linear 2D mapping. Since then, piecewise linear maps and their related continuous systems have become a subject of extensive research. Both Bullett and Ovsyannikov restricted analysis to the invariant curves of the new type, since the two branches of split separatrices form chaotic trajectories that are impossible to treat analytically. To the author’s knowledge, examples of persisting separatrices other than those given in [1, 2] have not been reported. In this work, the author presents numerical and analytical results that directly or indirectly concern the effect of separatrix persistence in the absence of attendant dynamic chaos. Issues remaining to be understood are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bullett, Commun. Math. Phys. 107, 241 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. L. V. Ovsyannikov, private communication (1999).

  3. B. V. Chirikov, Phys. Rep. 52, 263 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  4. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Dynamics (Springer, New York, 1982; Mir, Moscow, 1984).

    Google Scholar 

  5. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics: from Pendulum to Turbulence and Chaos (Nauka, Moscow, 1988; Harwood, Chur, 1988).

    Google Scholar 

  6. B. V. Chirikov, Chaos, Solitons, Fractals, 1, 79 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. J. Moser, Stable and Random Motion in Dynamical Systems (Princeton Univ., Princeton, 1973).

    Google Scholar 

  8. B. V. Chirikov, E. Keil, and A. Sessler, J. Stat. Phys. 3, 307 (1971).

    Article  Google Scholar 

  9. V. V. Vecheslavov, Preprint No. 99–69, IYAF (Budker Institute of Nuclear Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 1999).

  10. V. V. Vecheslavov, Preprint No. 00–27, IYaF (Budker Institute of Nuclear Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk, 2000); e-print archive:nlin. CD/0005048.

  11. V. V. Vecheslavov, Zh. Éksp. Teor. Fiz. 119, 853 (2001) [JETP 92, 744 (2001)].

    Google Scholar 

  12. V. V. Vecheslavov and B. V. Chirikov, Zh. Éksp. Teor. Fiz. 120, 740 (2001) [JETP 93, 649 (2001)].

    Google Scholar 

  13. V. V. Vecheslavov and B. V. Chirikov, Zh. Éksp. Teor. Fiz. 122, 175 (2002) [JETP 95, 154 (2002)].

    MathSciNet  Google Scholar 

  14. B. V. Chirikov and V. V. Vecheslavov, Zh. Éksp. Teor. Fiz. 122, 647 (2002) [JETP 95, 560 (2002)].

    Google Scholar 

  15. V. V. Vecheslavov, Zh. Tekh. Fiz. 73(9), 1 (2003) [Tech. Phys. 48, 1079 (2003)].

    Google Scholar 

  16. V. V. Vecheslavov, Zh. Tekh. Fiz. 74(5), 1 (2004) [Tech. Phys. 49, 521 2004)].

    Google Scholar 

  17. V. V. Vecheslavov, Zh. Tekh. Fiz. 58(1), 20 (1988) [Sov. Tech. Phys. 33, 11 (1988)].

    Google Scholar 

  18. V. V. Vecheslavov, Zh. Tekh. Fiz. 72(2), 20 (2002) [Tech. Phys. 47, 150 (2002)].

    Google Scholar 

  19. V. V. Vecheslavov, Zh. Éksp. Teor. Fiz. 125, 399 (2004) [JETP 98, 352 (2004)].

    Google Scholar 

  20. V. V. Vecheslavov, Zh. Tekh. Fiz. 75(7), 6 (2005) [Tech. Phys. 50, 821 (2005)].

    Google Scholar 

  21. V. V. Vecheslavov, Zh. Éksp. Teor. Fiz. 127, 915 (2005) [JETP 100, 811 (2005)].

    Google Scholar 

  22. V. V. Vecheslavov and B. V. Chirikov, Zh. Éksp. Teor. Fiz. 114, 1516 (1998) [JETP 87, 823 (1998)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Vecheslavov, 2006, published in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 6, pp. 15–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecheslavov, V.V. Smooth analog of standard mapping. Tech. Phys. 51, 690–699 (2006). https://doi.org/10.1134/S106378420606003X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378420606003X

PACS numbers

Navigation