Skip to main content
Log in

Nonlinear oscillations of a drop moving at a constant velocity in an insulating medium subjected to an electrostatic field

  • Atoms, Spectra, Radiation
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Nonlinear asymptotic calculations of the second order of smallness in the amplitude of the initial deformation of an ideally conducting liquid drop show that the laminar flow of an ideal conducting incompressible dielectric liquid flowing about the drop in an external electrostatic field parallel to the flow causes oscillation mode’s interaction in the first and second orders of smallness. Both linear and nonlinear interactions between the oscillation modes of the drop excite modes that are absent in the spectrum of modes governing the initial deformation of the drop’s equilibrium shape. In the second order of smallness, the mode interaction decreases the electrostatic field strength, as well as the velocity and density of the environment, that are critical for development of instability of the drop against the polarization charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Gonor and V. Ya. Rivkind, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 17, 98 (1982).

    Google Scholar 

  2. A. I. Grigor’ev and S. O. Shiryaeva, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 3 (1994).

  3. D. F. Belonozhko and A. I. Grigor’ev, Elektrokhim. Obrab. Met., No. 4, 17 (2000).

  4. V. A. Dyachuk and V. M. Muchnik, Dokl. Akad. Nauk SSSR 248, 60 (1979).

    Google Scholar 

  5. A. I. Grigor’ev and S. O. Shiryaeva, Phys. Scr. 54, 660 (1996).

    Article  ADS  Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  7. V. A. Koromyslov and A. I. Grigor’ev, Zh. Tekh. Fiz. 72(9), 21 (2002) [Tech. Phys. 47, 1090 (2002)].

    Google Scholar 

  8. A. I. Grigor’ev, V. A. Koromyslov, M. V. Rybakova, and S. O. Shiryaeva, Elektrokhim. Obrab. Met., No. 1, 41 (2002).

  9. A. I. Grigor’ev, Zh. Tekh. Fiz. 72(7), 41 (2002) [Tech. Phys. 47, 834 (2002)].

    Google Scholar 

  10. A. I. Grigor’ev, Pis’ma Zh. Tekh. Fiz. 28(12), 91 (2002) [Tech. Phys. Lett. 28, 530 (2002)].

    Google Scholar 

  11. V. A. Koromyslov, A. I. Grigor’ev, and M. V. Rybakova, Elektrokhim. Obrab. Met., No. 4, 50 (2002).

  12. A. R. Gaibov, S. O. Shiryaeva, A. I. Grigor’ev, and D. F. Belonozhko, Pis’ma Zh. Tekh. Fiz. 29(4), 22 (2003) [Tech. Phys. Lett. 29, 138 (2003)].

    Google Scholar 

  13. A. R. Gaibov and A. I. Grigor’ev, Zh. Tekh. Fiz. 73(7), 13 (2003) [Tech. Phys. 48, 813 (2003)].

    Google Scholar 

  14. V. A. Koromyslov, S. O. Shiryaeva, and A. I. Grigor’ev, Zh. Tekh. Fiz. 73(9), 44 (2003) [Tech. Phys. 48, 1124 (2003)].

    Google Scholar 

  15. M. V. Rybakova, S. O. Shiryaeva, and A. I. Grigor’ev, Zh. Tekh. Fiz. 74(1), 24 (2004) [Tech. Phys. 49, 22 (2004)].

    Google Scholar 

  16. V. A. Koromyslov, S. O. Shiryaeva, and A. I. Grigor’ev, Zh. Tekh. Fiz. 74(9), 23 (2004) [Tech. Phys. 49, 1126 (2004)].

    Google Scholar 

  17. A. I. Grigor’ev, S. O. Shiryaeva, and E. I. Belavina, Zh. Tekh. Fiz. 59(6), 27 (1989) [Sov. Phys. Tech. Phys. 34, 602 (1989)].

    Google Scholar 

  18. S. O. Shiryaeva, A. I. Grigor’ev, V. A. Koromyslov, and A. N. Zharov, Zh. Tekh. Fiz. 73(9), 60 (2003) [Tech. Phys. 48, 1141 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.A. Koromyslov, A.I. Grigor’ev, S.O. Shiryaeva, 2006, published in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 5, pp. 16–24.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koromyslov, V.A., Grigor’ev, A.I. & Shiryaeva, S.O. Nonlinear oscillations of a drop moving at a constant velocity in an insulating medium subjected to an electrostatic field. Tech. Phys. 51, 548–557 (2006). https://doi.org/10.1134/S1063784206050033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784206050033

PACS numbers

Navigation