Skip to main content
Log in

Absolute cross sections of electron attachment to molecular clusters: Part I. Formation of (CO2) N

  • Atoms, Spectra, Radiation
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A procedure of determining absolute cross section σ of electron attachment to (CO2)N clusters at pair collisions in crossed beams is suggested. The cross section is measured as a function of energy (E = 0.1–50 eV) and of cluster mean size N in a beam \((\bar N = 2 - 4000 molecules)\). It is found that, even at \(\bar N > 200\) and E ≤ 3 eV, σ is equal to, or larger than, 7 × 10−13 cm2, i.e., by more than one order of magnitude exceeds the maximal cross section of CO2 ionization by electron impact. The dependences σ \((\bar N,E)\) have two wide continua at E ≤ 5.2 eV and E ≥ 6.9 eV, which correlate well with known functions of CO2 electron-impact-induced excitation. These continua are attributed largely to formation of (CO2) N ions during electron thermalization and solvation in the clusters. At E → 0, the polarization capture of an incident electron by the cluster leads to a sharp increase in cross section σ(E). From the dependences σ \((\bar N,E)\) measured, the thermalization and sovation probabilities for electrons with E ≤ 0.8 eV and the rate of electron energy loss in the cluster are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Vostrikov, Zh. Tekh. Fiz. 54, 327 (1984) [Sov. Phys. Tech. Phys. 29, 191 (1984)].

    Google Scholar 

  2. A. A. Vostrikov, D. Yu. Dubov, and V. P. Gileva, Zh. Tekh. Fiz. 59(8), 52 (1989) [Sov. Phys. Tech. Phys. 34, 872 (1989)].

    Google Scholar 

  3. A. A. Vostrikov and D. Yu. Dubov, Z. Phys. D 20, 429 (1991).

    Article  Google Scholar 

  4. A. A. Vostrikov and V. P. Gileva, Pis’ma Zh. Tekh. Fiz. 20(15), 40 (1994) [Tech. Phys. Lett. 20, 625 (1994)].

    Google Scholar 

  5. R. S. MacTaylor and A. W. Castleman, Jr., J. Atmos. Chem. 36, 23 (2000).

    Article  Google Scholar 

  6. A. A. Vostrikov, A. A. Agarkov, and D. Yu. Dubov, Teplofiz. Vys. Temp. 39, 26 (2001).

    Google Scholar 

  7. G. Senn, P. Scheier, and T. D. Märk, in Atomic and Molecular Beams, State of the Art 2000, Ed. by R. Campargue (Springer, Berlin, 2001), pp. 683–692.

    Google Scholar 

  8. C. Brechignac and Ph. Cahuzae, in Atomic and Molecular Beams, State of the Art 2000, Ed. by R. Campargue (Springer-Verlag, Berlin, 2001), pp. 667–682.

    Google Scholar 

  9. L. I. Kurkina, Fiz. Tverd. Tela (St. Petersburg) 44, 170 (2002) [Phys. Solid State 44, 175 (2002)].

    Google Scholar 

  10. M. Y. Amusia and A. V. Korol’, Phys. Lett. A 186, 230 (1994).

    Article  ADS  Google Scholar 

  11. J. P. Connerade and A. V. Solov’yev, J. Phys. B 29, 3529 (1996).

    Article  ADS  Google Scholar 

  12. M. Schumacher, S. Teuber, L. Koller, et al., Eur. Phys. J. D 9, 411 (1999).

    Article  ADS  Google Scholar 

  13. A. A. Vostrikov, D. Yu. Dubov, and A. A. Agarkov, Zh. Tekh. Fiz. 70(7), 102 (2000) [Tech. Phys. 45, 915 (2000)].

    Google Scholar 

  14. P. G. Reinhard and E. Suraud, Laser Phys. 11, 566 (2001).

    Google Scholar 

  15. J. W. G. Tisch, N. Hay, K. J. Mendham, et al., Nucl. Instrum. Methods Phys. Res. B 205, 310 (2003).

    Article  ADS  Google Scholar 

  16. L. I. Kurkina, Fiz. Tverd. Tela (St. Petersburg) 46, 538 (2004) [Phys. Solid State 46, 557 (2004)].

    Google Scholar 

  17. A. A. Vostrikov and D. Yu. Dubov, in Rarefied Gas Dynamics, Ed. by A. E. Beylich (VCH, Weinheim, 1991), pp. 1156–1163.

    Google Scholar 

  18. A. A. Vostrikov and D. Yu. Dubov, Zh. Éksp. Teor. Fiz. 125, 222 (2004) [JETP 98, 197 (2004)].

    Google Scholar 

  19. J. B. Hasted, Physics of Atomic Collisions (Butterworths, London, 1964; Mir, Moscow, 1965).

    Google Scholar 

  20. W. R. Henderson, W. L. Fite, and R. T. Brackmann, Phys. Rev. 183, 157 (1969).

    Article  ADS  Google Scholar 

  21. K. Leiter, P. Scheier, G. Walder, and T. D. Mark, Int. J. Mass Spectrom. Ion Processes 87, 209 (1989).

    Article  Google Scholar 

  22. A. N. Zavilopulo and A. V. Snegurskiĭ, Pis’ma Zh. Tekh. Fiz. 28(21), 68 (2002) [Tech. Phys. Lett. 28, 913 (2002)].

    Google Scholar 

  23. D. Golomb, R. E. Good, A. B. Balley, et al., J. Chem. Phys. 57, 3844 (1972).

    Article  Google Scholar 

  24. D. Dreyfuss and H. Y. Wachman, J. Chem. Phys. 76, 2031 (1982).

    Article  ADS  Google Scholar 

  25. D. Rapp, P. Englander-Golden, and D D. Briglia, J. Chem. Phys. 43, 1464 (1965).

    Article  Google Scholar 

  26. D. Rapp and D. D. Briglia, J. Chem. Phys. 43, 1480 (1965).

    Article  Google Scholar 

  27. A. A. Vostrikov, Yu. S. Kusner, A. K. Rebrov, et al., Prib. Tekh. Éksp., No. 1, 177 (1975).

  28. H. Falter, O. F. Hagena, W. Henkes, and H. V. Wedel, Int. J. Mass Spectrom. Ion Phys. 4, 145 (1970).

    Article  Google Scholar 

  29. A. A. Vostrikov, D. Yu. Dubov, and M. R. Predtechenski’, Preprint No. 150-86, IT SO AN SSSR (Institute of Thermal Physics, SO AN SSSR, Novosibirsk, 1986).

  30. A. A. Vostrikov and M. R. Predtechenskii, Zh. Tekh. Fiz. 55, 887 (1985) [Sov. Phys. Tech. Phys. 30, 529 (1985)].

    Google Scholar 

  31. A. A. Vostrikov, D. Yu. Dubov, and M. R. Predtechenskiĭ, Zh. Tekh. Fiz. 57, 760 (1987) [Sov. Phys. Tech. Phys. 32, 459 (1987)].

    Google Scholar 

  32. H. Massey, Negative Ions (Cambridge Univ. Press, New York, 1976; Mir, Moscow, 1979).

    Google Scholar 

  33. C. E. Klots and R. N. Compton, J. Chem. Phys. 67, 1779 (1977).

    Article  ADS  Google Scholar 

  34. C. E. Klots and R. N. Compton, J. Chem. Phys. 69, 1636 (1978).

    Article  ADS  Google Scholar 

  35. A. A. Vostrikov and M. R. Predtechenskii, in Proceedings of the 9th All-Union Conference on Physics of Electronic and Atomic Collisions, Riga, 1984, Chap. 2, p. 56.

  36. M. Knapp, D. Kreisle, O. Echt, et al., Surface Sci. 156, 562 (1985).

    Article  Google Scholar 

  37. A. Stamatovic, K. Leiter, W. Ritter, et al., J. Chem. Phys. 83, 2942 (1985).

    Article  ADS  Google Scholar 

  38. T. Kondow and K. Mitsuke, J. Chem. Phys. 83, 2612 (1985).

    Article  ADS  Google Scholar 

  39. A. A. Vostrikov, D. Yu. Dubov, and M. R. Predtechenskiĭ, Zh. Tekh. Fiz. 56, 1398 (1986) [Sov. Phys. Tech. Phys. 31, 821 (1986)].

    Google Scholar 

  40. M. Knapp, O. Echt, D. Kreisle, et al., Chem. Phys. Lett. 126, 225 (1986).

    Article  ADS  Google Scholar 

  41. H. Langosh and H. Haberland, Z. Phys. D 2, 243 (1986).

    Article  Google Scholar 

  42. M. L. Alexander, M. A. Johnson, N. E. Levinger, and W. C. Leneberger, Phys. Rev. Lett. 57, 976 (1986).

    Article  ADS  Google Scholar 

  43. S. H. Fleishman and K. D. Jordan, J. Phys. Chem. 91, 1300 (1987).

    Article  Google Scholar 

  44. T. Kondow, J. Phys. Chem. 91, 1307 (1987).

    Article  Google Scholar 

  45. M. J. Deluca, B. Niu, and M. A. Johnson, J. Chem. Phys. 88, 5857 (1988).

    Article  ADS  Google Scholar 

  46. T. Kraft, M. W. Ruf, and H. Hotop, Z. Phys. D 14, 179 (1989).

    Article  Google Scholar 

  47. F. Misaizu, K. Mitsuke, T. Kondow, and K. Kuchitsu, J. Chem. Phys. 94, 243 (1991).

    Article  ADS  Google Scholar 

  48. M. Lezius, T. Rauth, V. Grill, et al., Z. Phys. D 24, 289 (1992).

    Article  Google Scholar 

  49. T. Tsukuda, M. A. Johnson, and T. Nagata, Chem. Phys. Lett. 268, 429 (1997).

    Article  Google Scholar 

  50. M. K. Raarup, H. H. Andersen, and T. Andersen, J. Phys. B 32, L659 (1999).

    Article  ADS  Google Scholar 

  51. A. Dreuw and L. S. Cederbaum, J. Phys. B 32, L665 (1999).

    Article  ADS  Google Scholar 

  52. E. Leber, S. Barsotti, I. I. Fabrikant, et al., Eur. Phys. J. D 12, 125 (2000).

    Article  ADS  Google Scholar 

  53. M. Saeki, T. Tsukuda, and T. Nagata, Chem. Phys. Lett. 340, 376 (2001).

    Article  Google Scholar 

  54. S. Barsotti, E. Leber, M.-R. Ruf, and H. Hotop, Int. J. Mass Spectrom. 220, 313 (2002).

    Article  Google Scholar 

  55. A. A. Vostrikov, D. Yu. Dubov, and V. P. Gileva, Prog. Astronaut. Aeronaut. 117, 335 (1989).

    Google Scholar 

  56. C. Malone, W. Kedzierski, and J. W. McConkey, J. Phys. B 33, 4863 (2000).

    Article  ADS  Google Scholar 

  57. A. A. Vostrikov, D. Yu. Dubov, and V. P. Gilyova, Z. Phys. D 20, 205 (1991).

    Article  Google Scholar 

  58. L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat’ev, Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, and Yu. S. Khodeev, Energy of Chemical Bond Breakage: Ionization Potentials and Electron Affinity (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  59. R. L. Platzman, Radiat. Res. 17, 419 (1962).

    Google Scholar 

  60. I. G. Kaplan and A. M. Miterev, Khim. Vys. Énerg. 19, 208 (1985).

    Google Scholar 

  61. R. F. Stebbings and F. B. Dunning, Rydberg States of Atoms and Molecules (Cambridge Univ. Press, Cambridge, 1983; Mir, Moscow, 1985).

    Google Scholar 

  62. Y. Hatano, Bull. Chem. Soc. Jpn. 76, 853 (2003).

    Article  Google Scholar 

  63. D. Spence and G. J. Schulz, in Proceedings of the 8th International Conference on Photonic, Electronic and Atomic (ICPEAC), Belgrade, 1973, p. 467.

  64. B. R. Bulos and A. V. Phelps, Phys. Rev. A 14, 615 (1976).

    Article  ADS  Google Scholar 

  65. I. V. Kochetov, V. G. Pevgov, L. G. Polak, and D. I. Slovetskiĭ, in Plasmochemical Processes (Nauka, Moscow, 1979), pp. 4–43 [in Russian].

    Google Scholar 

  66. J. C. Gibson, M. A. Green, K. W. Trantham, et al., J. Phys. B 32, 213 (1999).

    Article  ADS  Google Scholar 

  67. M. Allan, Phys. Rev. Lett. 8703, 3201 (2001).

    Google Scholar 

  68. G. Briegleb, Elektronen-Donator-Acceptor-Komplexe (Springer, Berlin, 1961).

    Google Scholar 

  69. S. Cvejanovic, J. Jureta, and D. Cvejanovic, J. Phys. B 18, 2541 (1985).

    Article  ADS  Google Scholar 

  70. Y. Itikawa, J. Phys. Chem. Ref. Data 31, 749 (2002).

    Article  ADS  Google Scholar 

  71. F. Bottiglioni, J. Coutant, and M. Fois, Phys. Rev. A 6, 1830 (1972).

    Article  ADS  Google Scholar 

  72. A. A. Vostrikov and D. Yu. Dubov, Preprint No. 112-84, IT SO AN SSSR (Institute of Thermal Physics, SO AN SSSR, Novosibirsk, 1984).

  73. C. E. Klots, J. Chem. Phys. 100, 1035(1994).

    Article  ADS  Google Scholar 

  74. H. Landolt and R. Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik (Springer, Berlin, 1982), pp. 1950–1957.

    Google Scholar 

  75. C. Torchet, H. Bouchier, J. Farges, et al., J. Chem. Phys. 81, 2137 (1984).

    Article  ADS  Google Scholar 

  76. CRC Handbook of Chemistry and Physics, 82nd ed. (on CD-ROM), Ed. by D. R. Lide (CRC, Boca Raton, 2002).

    Google Scholar 

  77. D. Klar, M.-W. Ruf, and H. Hotop, Meas. Sci. Technol. 5, 1248 (1994).

    Article  ADS  Google Scholar 

  78. R. D. Hake, Jr. and A. V. Phelps, Phys. Rev. 152, 70 (1967).

    Article  ADS  Google Scholar 

  79. W. Oohara and R. Hatakeyama, Phys. Rev. Lett. 91, 201005-1 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Vostrikov, D.Yu. Dubov, 2006, published in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 5, pp. 8–15.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vostrikov, A.A., Dubov, D.Y. Absolute cross sections of electron attachment to molecular clusters: Part I. Formation of (CO2) N . Tech. Phys. 51, 540–547 (2006). https://doi.org/10.1134/S1063784206050021

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784206050021

PACS numbers

Navigation