Skip to main content
Log in

Unoccupied electronic states in quaterphenyl oligomer films and at the film-gold and film-oxidized silicon interfaces

  • Surface, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Thin films of 4-quaterphenyl (4-QP) are thermally deposited in an ultrahigh vacuum on polycrystalline gold and oxidized silicon substrates. In the process of deposition, the structure of unoccupied electron states 5–20 eV above the Fermi level (E F) and the surface potential are monitored by the method of total current spectroscopy (TCS) using an incident beam of low-energy electrons. During the deposition, the electron work function of the surface changes because of a change in the surface layer composition, reaching a steady-state value of 4.3 ± 0.1 eV at a 4-QP film thickness of 8–10 nm. The density of valence states (DOVS) and the density of unoccupied states (DOUS) in model 4-QP films are calculated using the linearized augmented plane wave method in the generalized gradient approximation of the density functional theory. In the model 4-QP structure, the minimal spacing between carbon atoms of neighboring 4-QP molecules is taken to be 0.4 nm in order that intermolecular interaction can be assumed to be relatively weak, which is observed in disordered 4-QP films. The TCS-measured DOUS and the DOUS predicted theoretically are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fahlman and W. R. Salaneck, Surf. Sci. 500, 904 (2002).

    Article  Google Scholar 

  2. H. Ishii, H. Oji, E. Ito, et al., J. Lumin. 87–89, 61 (2000).

    Google Scholar 

  3. I. Hill, D. Milliron, J. Schwartz, and A. Kahn, Appl. Surf. Sci. 166, 354 (2000).

    Article  Google Scholar 

  4. L. Yan and Y. Gao, Thin Solid Films 417, 101 (2002).

    Article  Google Scholar 

  5. J. Blochwitz, T. Fritz, M. Pfeiffer, et al., Organic Electr. 2, 97 (2001).

    Google Scholar 

  6. Y. Gotou, I. Kakinoki, M. Noto, and M. Era, Curr. Appl. Phys. 5, 19 (2005).

    Article  Google Scholar 

  7. S. Kobayashi and Y. Haga, Synth. Met. 87, 31 (1997).

    Google Scholar 

  8. F. Balzer and H.-G. Rubahn, Surf. Sci. 507–510, 588 (2002).

    Google Scholar 

  9. Y. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, 1996), Chaps. 6, 10.

    Google Scholar 

  10. A. P. Hitchcock, D. C. Newbury, I. Ishii, et al., J. Phys. Chem. 85, 484 (1986).

    Google Scholar 

  11. J. H. Guo, M. Magnuson, C. Sathe, et al., J. Chem. Phys. 108, 5990 (1998).

    ADS  Google Scholar 

  12. H. Oji, R. Mitsumoto, E. Ito, et al., J. Chem. Phys. 109, 10409 (1998).

  13. M. Springborg, K. Schmidt, H. Meider, and L. de Maria, in Organic Electronic Materials, Ed. by R. Farchioni and G. Grosso (Springer, Berlin, 2001), p. 39.

    Google Scholar 

  14. I. Hill, A. Kahn, J. Cornil, et al., Chem. Phys. Lett. 317, 444 (2000).

    Article  Google Scholar 

  15. V. N. Strocov and H. I. Starnberg, Phys. Rev. B 52, 8759 (1995).

    Article  ADS  Google Scholar 

  16. S. A. Komolov, Total Current Spectroscopy of Surfaces (Gordon & Breach, Philadelphia, 1992).

    Google Scholar 

  17. O. F. Panchenko, J. Electron Spectrosc. Relat. Phenom. 127, 11 (2002).

    Article  Google Scholar 

  18. A. S. Komolov, P. J. Möller, and E. F. Lazneva, J. Electron Spectrosc. Relat. Phenom. 131–132, 67 (2003).

    Google Scholar 

  19. A. S. Komolov and P. J. Möller, Synth. Met. 128, 205 (2002).

    Google Scholar 

  20. S. A. Komolov, Phys. Low-Dimens. Semicond. Struct. 3–4, 103 (2004).

    Google Scholar 

  21. I. Bartos, Prog. Surf. Sci. 59, 197 (1998).

    Article  Google Scholar 

  22. A. Komolov and P. J. Möller, Appl. Surf. Sci. 244, 573 (2005).

    Article  ADS  Google Scholar 

  23. P. J. Möller, S. A. Komolov, E. F. Lazneva, and A. S. Komolov, Appl. Surf. Sci. 175–176, 663 (2001).

    Google Scholar 

  24. H. Peisert, T. Schwieger, J. M. Auerhammer, et al., J. Appl. Phys. 90, 467 (2001).

    Article  ADS  Google Scholar 

  25. V. Papaefthimiou, A. Siokou, and S. Kennou, Surf. Sci. 569, 207 (2004).

    Article  ADS  Google Scholar 

  26. J. C. Rivière, in Solid State Surface Science, Ed. by M. Green (Dekker, New York, 1969), Vol. 1, pp. 180–303.

    Google Scholar 

  27. X. Y. Li, X. S. Tang, and F. C. He, Chem. Phys. 248, 137 (1999).

    Article  Google Scholar 

  28. L. Athouel, R. Resel, N. Koch, et al., Synth. Met. 101, 628 (1999).

    Google Scholar 

  29. P. Blaha, K. Schwarz, G. Madsen, et al., WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. University of Wien, Austria, 2001).

    Google Scholar 

  30. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    ADS  MathSciNet  Google Scholar 

  31. J. P. Perdew, J. A. Chevary, and S. H. Vosko, Phys. Rev. B 46, 6671 (1992).

    ADS  Google Scholar 

  32. K. Schwarz and P. Blaha, in Quantum-Mechanical ab Initio Calculation of the Properties of Crystalline Materials, Ed. by C. Pisani (Springer, Berlin, 1996), p. 139.

    Google Scholar 

  33. P. E. Blöhl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).

    Google Scholar 

  34. P. G. Schroeder, M. W. Nelson, B. A. Parkinson, and R. Schlaf, Surf. Sci. 459, 349 (2000).

    Article  Google Scholar 

  35. W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Freeman, San Francisco, 1980; Mir, Moscow, 1983).

    Google Scholar 

  36. E. Jungyoon, S. Kim, E. Lim, et al., Appl. Surf. Sci. 205, 274 (2003).

    Google Scholar 

  37. M. J. Winokur, P. Wamsley, J. Moulton, et al., Macromolecules 224, 3812 (1991).

    Google Scholar 

  38. J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, and J. Cornil, Proc. Natl. Acad. Sci. USA 99, 5804 (2002).

    Article  ADS  Google Scholar 

  39. J. Cornil, D. Beljonne, J. P. Calbert, and J. L. Bredas, Adv. Mater. 13, 1053 (2001).

    Article  Google Scholar 

  40. E. Ito, H. Oji, M. Furuta, et al., Synth. Met. 101, 654 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Komolov, 2006, published in Zhurnal Tekhnicheskoĭi Fiziki, 2006, Vol. 76, No. 3, pp. 70–74.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komolov, A.S. Unoccupied electronic states in quaterphenyl oligomer films and at the film-gold and film-oxidized silicon interfaces. Tech. Phys. 51, 362–366 (2006). https://doi.org/10.1134/S106378420603011X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378420603011X

PACS numbers

Navigation