Skip to main content
Log in

On the mechanism of carbon nanotube formation in electrochemical processes

  • Solid-State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Quantum-chemical methods are used to analyze the mechanism of carbon nanotube formation in the electrochemical bath, where tiny fragments of graphene planes are in the environment of atoms and ions of alkali metals and halogens. In the optimal configuration, alkali metal atoms move toward the edge of a graphene fragment, whereas halogen atoms remain at the sites of their initial attachment. When the graphene fragments “burdened” by alkali metal and halogen atoms interact with each other, the overall graphene configuration twists in a natural way into a nanotube-like open-end structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. S. Iijima, T. Ichihashi, and Y. Ando, Nature 356, 776 (1992).

    ADS  Google Scholar 

  3. T. W. Ebbesen and P. M. Ajayan, Nature 358, 220 (1992).

    Article  ADS  Google Scholar 

  4. P. J. Harris, Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge, 1999; Tekhnosfera, Moscow, 2003).

    Google Scholar 

  5. H. Dai, A. G. Rinzler, P. Nicolaev, et al., Chem. Phys. Lett. 262, 161 (1996).

    Article  Google Scholar 

  6. W. K. Hsu, M. Terrones, J. P. Hare, et al., Chem. Phys. Lett. 262, 161 (1996).

    Article  Google Scholar 

  7. G. Z. Chen, X. Fan, A. Luget, et al., J. Electroanal. Chem. 446, 1 (1998).

    Article  Google Scholar 

  8. J. B. Bai, A. L. Hamon, A. Marraud, et al., Chem. Phys. Lett. 365, 184 (2002).

    Google Scholar 

  9. N. I. Alekseyev, Yu. G. Osipov, K. N. Semenov, et al., Zh. Tekh. Fiz. 76(2), 132 (2006) [Tech. Phys. 48 (2003) (in press)].

    Google Scholar 

  10. N. I. Alekseyev, Zh. Tekh. Fiz. 74(9), 63 (2004) [Tech. Phys. 49, 1166 (2004)].

    Google Scholar 

  11. V. Jourdain, H. Kanzow, M. Castignolles, et al., Chem. Phys. Lett. 364, 27 (2002).

    Article  Google Scholar 

  12. V. V. Kovalevsky and A. N. Safronov, Carbon 36, 963 (1998).

    Google Scholar 

  13. C. H. Kiang, J. Chem. Phys. 113, 4763 (2000).

    Article  ADS  Google Scholar 

  14. Y. H. Lee, S. G. Kim, and D. Tomanek, Phys. Rev. Lett. 78, 2393 (1997).

    ADS  Google Scholar 

  15. N. I. Alekseyev and G. A. Dyuzhev, Zh. Tekh. Fiz. 71(5), 67 (2001) [Tech. Phys. 46, 573 (2001)].

    Google Scholar 

  16. R. L. Vander Wal, Chem. Phys. Lett. 324, 217 (2000).

    Article  Google Scholar 

  17. A. V. Saveliev, L. A. Kennedy, and W. Merchan-Merchan, Combust. Flame 135, 27 (2002).

    Google Scholar 

  18. H. Eyring, S. H. Lin, and S. M. Lin, Basic Chemical Kinetics (Wiley, New York, 1980; Mir, Moscow, 1983).

    Google Scholar 

  19. N. I. Alekseyev and G. A. Dyuzhev, Zh. Tekh. Fiz. 71(5), 71 (2001) [Tech. Phys. 46, 577 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Alekseev, S.V. Polovtsev, N.A. Charykov, 2006, published in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 3, pp. 57–63.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, N.I., Polovtsev, S.V. & Charykov, N.A. On the mechanism of carbon nanotube formation in electrochemical processes. Tech. Phys. 51, 349–355 (2006). https://doi.org/10.1134/S1063784206030091

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784206030091

PACS numbers

Navigation