Skip to main content
Log in

Computer simulation of Ti3Al intermetallic cleavage fracture

  • Solids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The decohesion energy and the energy of unstable stacking faults for all cracking planes and dislocation slip systems observed experimentally are calculated using the molecular dynamics method with N-particle atomic potentials. A dimensionless parameter characterizing the brittle behavior of the material is calculated for basis, prism, and pyramid faces in terms of the model elaborated by Kelly et al. and extended by Rice and Thompson. Cleavage in Ti3Al is due to low decohesion energy values, which facilitates cracking, and high energies of unstable stacking faults, which prevents the formation of a plastic zone and stress relaxation at its vertex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Minonishi and M. H. Yoo, Philos. Mag. Lett. 60, 203 (1990).

    Google Scholar 

  2. Y. Umakoshi, T. Nakano, and B. Ogawa, Scr. Mater. 34, 1161 (1996).

    Article  Google Scholar 

  3. H. Inui, Y. Toda, Y. Shirai, and M. Yamaguchi, Philos. Mag. A 69, 1161 (1994).

    Google Scholar 

  4. H. Inui, Y. Toda, and M. Yamaguchi, Philos. Mag. A 63, 1315 (1993).

    Google Scholar 

  5. E. V. Panova, L. E. Karkina, and E. P. Romanov, Fiz. Met. Metalloved. 75, 453 (1993).

    Google Scholar 

  6. M. Legros, A. Couret, and D. Caillard, Philos. Mag. A 73, 61 (1996).

    Google Scholar 

  7. S. A. Court, J. P. A. Lafvander, M. H. Loretto, and H. L. Fraser, Philos. Mag. A 59, 280 (1989).

    Google Scholar 

  8. Y. Minonishi, Philos. Mag. A 62, 1085 (1991).

    Google Scholar 

  9. K. Kishida, J. Yoshikawa, H. Inui, and M. Yamaguchi, Acta Mater. 47, 3405 (1999).

    Article  Google Scholar 

  10. L. Yakovenkova, S. Malinov, T. Novoselova, and L. Karkina, Intermetallics 12, 599 (2004).

    Article  Google Scholar 

  11. L. Yakovenkova, S. Malinov, L. Karkina, and T. Novoselova, Scr. Mater. (2005) (in press).

  12. A. Kelly, W. Tyson, and A. H. Cottrell, Philos. Mag. 15, 567 (1967).

    Google Scholar 

  13. J. R. Rice and R. Thompson, Philos. Mag. 29, 73 (1973).

    Google Scholar 

  14. L. I. Yakovenkova, V. V. Kirsanov, L. E. Karkina, et al., Fiz. Met. Metalloved. 89, 31 (2000).

    Google Scholar 

  15. Y. Sun, J. R. Rice, and L. Truskinovsky, Mater. Res. Soc. Symp. Proc. 213, 243 (1991).

    Google Scholar 

  16. L. I. Yakovenkova and L. E. Karkina, Izv. Ross. Akad. Nauk, Ser. Fiz. 65, 858 (2001).

    Google Scholar 

  17. J. H. Rose, J. R. Smith, and J. Ferrante, Phys. Rev. B 28, 1835 (1983).

    Article  ADS  Google Scholar 

  18. L. I. Yakovenkova, L. E. Karkina, and M. Ya. Rabovskaya, Zh. Tekh. Fiz. 73(1), 60 (2003) [Tech. Phys. 48, 56 (2003)].

    Google Scholar 

  19. L. I. Yakovenkova, L. E. Karkina, and M. Ya. Rabovskaya, in Proceedings of the 9th International Conference on Problems of Nanocrystalline Materials, Yekaterinburg, 2002, pp. 457–469.

  20. Yu. N. Gomostyrev, M. I. Katsnelson, et al., Phys. Rev. B 62, 7802 (2000).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.E. Karkina, L.I. Yakovenkova, M.Ya. Rabovskaya, 2006, published in Zhurnal Tekhnicheskoĭi Fiziki, 2006, Vol. 76, No. 3, pp. 50–56.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karkina, L.E., Yakovenkova, L.I. & Rabovskaya, M.Y. Computer simulation of Ti3Al intermetallic cleavage fracture. Tech. Phys. 51, 342–348 (2006). https://doi.org/10.1134/S106378420603008X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378420603008X

PACS numbers

Navigation