Skip to main content
Log in

Coolant film flow over the edge of a nozzle in a rarefied gas

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The flow of a thin liquid film over the nozzle wall under the action of tangential friction and pressure gradient is considered. For the slow flow of the film with constant thermal physical properties, analytical dependences of the film thickness and temperature at the interface on the coordinate along the nozzle edge are derived. The flow of the film over the variable-curvature nozzle edge when the gas expands into vacuum is considered. At the initial section of the curvilinear edge, the film thickness increases in inverse proportion to the root of the friction stress at the interface. Near the end point of the nozzle, the film thickens drastically because of a decrease in the friction and, consequently, the curvature of the interface diminishes. As a result, the deceleration of the liquid by the Laplace pressure gradient drops, which causes an additional sharp growth of the thickness of the film with the possibility of its dynamic and thermal disintegration and, eventually, contamination of the spacecraft surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Trinks and I. Kaelsch, AIAA Pap., No. 87-1603 (1987).

  2. H. Trinks, AIAA Pap. No. 87-1607 (1987).

  3. V. N. Yarygin, V. G. Prikhod’ko, I. V. Yarygin, et al., Teplofiz. Aeromekh. 10, 279 (2003).

    Google Scholar 

  4. V. G. Prikhod’ko and V. N. Yargin, Teplofiz. Aeromekh. 70, 459 (2000).

    Google Scholar 

  5. V. G. Prikhod’ko, S. F. Chekmarev, V. N. Yargin, and V. N. Yarygin, Dokl. Akad. Nauk 394(5), 1 (2004) [Dokl. Phys. 49, 119 (2004)].

    Google Scholar 

  6. Yu. P. Golovachov, M. S. Ivanov, D. V. Khotyanovsky, et al., in Proceedings of the 37th AIAA Thermophysics Conference, Orlando, 2003, AIAA-2003-3494.

  7. Yu. P. Golovachov, M. S. Ivanov, D. V. Khotyanovsky, et al., in Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyvaskyla, Finland, 2004 (on CD).

  8. Yu. P. Golovachov, B. I. Reznikov, A. A. Shmidt, et al., in Proceedings of the International Conference “Fundamental Problems of Supersonic Flows,” Zhukovskiĭ, 2004.

  9. G. A. Tirskiĭ, Zh. Vychisl. Mat. Mat. Fiz. 1, 481 (1961).

    Google Scholar 

  10. P. R. Nachtsheim and J. R. Hagen, AIAA J. 10, 1637 (1972); Raketnaya Tekhnika i Kosmonavtika 10, 104 (1972).

    Google Scholar 

  11. V. G. Levich, Physicochemical Hydrodynamics (Fizmatgiz, Moscow, 1959; Prentice-Hall, New Jersey, 1962).

    Google Scholar 

  12. E. I. Nesis, Usp. Fiz. Nauk 85, 615 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.I. Reznikov, Yu.P. Golvachov, A.A. Schmidt, M.S. Ivanov, A.N. Kudryavtsev, 2006, published in Zurnal Tekhnichekoĭ Fiziki, 2006, Vol. 76, No. 3, pp. 30–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renznikov, B.I., Golovachov, Y.P., Schmidt, A.A. et al. Coolant film flow over the edge of a nozzle in a rarefied gas. Tech. Phys. 51, 322–329 (2006). https://doi.org/10.1134/S1063784206030054

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784206030054

PACS numbers

Navigation