Skip to main content
Log in

Yttrium Doped α-Fe2O3 Nanorods for Enhanced Optoelectronic Properties and Increased Photocurrent Density

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Hematite (α-Fe2O3) has received a lot of attention and has potential use in a variety of applications such as energy storage and photovoltaic solar cells despite its short diffusion length and extremely low conductivity. A possible strategy to enhance its structural and optoelectronic properties is element doping. In this work, we report on the successful preparation of α-Fe2O3 nanorods thin film via a simple low-cost hydrothermal process, and the crucial effect of yttrium doping. We analyzed the effects of Y-doping of α-Fe2O3 by varying the amount of yttrium 1, 3, 5, and 8 at %. The optical study revealed that Y-doping reduces the optical band gap, with a shift from 2.11 eV for pure hematite NRs films to 1.94 eV for 5 at % Y-doped NRs. Our study proved that Y-doping obviously reduced the recombination activities in α-Fe2O3 as demonstrated by the photoluminescence study. Amongst all doped α-Fe2O3 NRs films with different Y dopant concentration, the 5 at % exhibited best structural and optoelectronic properties with the highest photocurrent density and incident photon to current efficiency (IPCE). The photocurrent density was increased from 0.25 (undoped) to 1.25 mA/cm2 in the doped NRs with 5 at % Y content at 0.4 V vs. (Ag/AgCl) under illumination, which is 5 times higher than that measured in the pristine α-Fe2O3. The high photo-response of Y-doped NRs in the visible range suggests that the grown NRs thin films are excellent candidates for optoelectronic applications, particularly in solar cells and large light-harvesting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. P. Gargallo, N. García-Casarejos, and M. Salvador, Energy Rep. 6, 436 (2020). https://doi.org/10.1016/j.egyr.2019.08.085

    Article  Google Scholar 

  2. M. Grätzel, Nature 414, 338 (2001).

    Article  ADS  Google Scholar 

  3. M. S. Dresselhaus and I. L. Thomas, Nature 414, 332 (2011).

    Article  ADS  Google Scholar 

  4. J. L. Young, M. A. Steiner, H. Döscher, R. M. France, J. A. Turner, and T.G. Deutsch, Nat. Energy. 2, 17028 (2017).

    Article  ADS  Google Scholar 

  5. W. Hu, T. Liu, X. Yin, H. Liu, X. Zhao, S. Luo, Y. Guo, Z. Yao, J. Wang, N. Wang, H. Lin, and Z. Guo, J. Mater. Chem. A 5, 1434 (2017). https://doi.org/10.1039/C6TA09174A

    Article  Google Scholar 

  6. F. Bouhjar, L. Derbali, B. Marí, and B. Bessaïs, Sol. Energy Mater. Sol. Cells 195 241 (2019). https://doi.org/10.1016/j.solmat.2019.03.010

    Article  Google Scholar 

  7. Z. S. Li, W. J. Luo, M. L. Zhang, J. Y. Feng, and Z. G. Zou, Energy Environ. Sci. 6, 347 (2013).

    Article  Google Scholar 

  8. C. Liu, N. P. Dasgupta, and P. D. Yang, Chem. Mater. 26, 415 (2014).

    Article  Google Scholar 

  9. Y. C. Ling, G. M. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, Nano Lett. 11 2119 (2011).

    Article  ADS  Google Scholar 

  10. P. S. Shinde, A. Annamalai, J. Y. Kim, S. H. Choi, J. S. Lee, and J. S. Jang, J. Phys. Chem. C 119, 5281 (2015).

    Article  Google Scholar 

  11. L. F. Xi, P. S. Bassi, S. Y. Chiam, W. F. Mak, P. D. Tran, J. Barber, J. S. C. Loo, and L. H. Wong, Nanoscale 4, 4430 (2012).

    Article  ADS  Google Scholar 

  12. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Gratzel, J. Am. Chem. Soc. 132, 7436 (2010).

    Article  Google Scholar 

  13. J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, Sci. Rep. 3 (2681), 1 (2013).

    Google Scholar 

  14. A. Annamalai, D. Carvalho, K. C. Wilson, and M.‑J. Lee, Mater. Charact. 61, 873 (2010).

    Article  Google Scholar 

  15. Y. Ling and Y. Li, Part. Part. Syst. Charact. 31, 1113 (2014).

    Article  Google Scholar 

  16. J. Liu, C. H. Liang, G. P. Xu, Z. F. Tian, G. S. Shao, L. D. Zhang, Nano Energy 2 328 (2013).

    Article  Google Scholar 

  17. M. A. Lukowski and S. Jin, J. Phys. Chem. C 115, 12388 (2011).

    Article  Google Scholar 

  18. O. Zandi, B. M. Klahr, T. W. Hamann, Energy Environ. Sci. 6, 634 (2013).

    Article  Google Scholar 

  19. J. Liu, C. H. Liang, H. M. Zhang, Z. F. Tian, and S. Y. Zhang, J. Phys. Chem. C 116, 4986 (2012).

    Article  Google Scholar 

  20. R. Franking, L. S. Li, M. A. Lukowski, F. Meng, Y. Z. Tan, R. J. Hamers, and S. Jin, Energy Environ. Sci. 6, 500 (2013).

    Article  Google Scholar 

  21. R. L. Spray, K. J. McDonald, and K. S. Choi, J. Phys. Chem. C 115, 3497 (2011).

    Article  Google Scholar 

  22. G. Wang, Y. Ling, D.A. Wheeler, K. E. N. George, K. Horsley, C. Heske, J. Z. Zhang, and Y. Li, Nano Lett. 11, 3503 (2011). https://doi.org/10.1021/nl202316j

    Article  ADS  Google Scholar 

  23. Y. Liu, Z. Wang, W. Fan, Z. Geng, and L. Feng, Ceram. Int. 40, 3887 (2014). https://doi.org/10.1016/j.ceramint.2013.08.030

    Article  Google Scholar 

  24. X. Guo, et al., Org. Electron. 62, 459 (2018). https://doi.org/10.1016/j.orgel.2018.08.039

    Article  Google Scholar 

  25. R. Yin, et al., Adv. Mater. Interfaces 9 (29), 2201488 (2022). https://doi.org/10.1002/admi.202201488

  26. H. S. Kim, et al., J. Phys. Chem. Lett. 6 (22), 4633 (2015). https://doi.org/10.1021/acs.jpclett.5b02273

    Article  Google Scholar 

  27. W. Zhao, H. Li, D. Li, Z. Liu, D. Wang, and S. F. Liu, J. Power Sources 427, 223 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.088

    Article  ADS  Google Scholar 

  28. E. Calabrò, et al., Sol. Energy Mater. Sol. Cells 185, 136 (2018). https://doi.org/10.1016/j.solmat.2018.05.001

    Article  Google Scholar 

  29. C. Tang, et al., J. Mater. Chem. A 7 (14), 8050 (2019). https://doi.org/10.1039/c9ta00561g

    Article  ADS  Google Scholar 

  30. W. Hu, et al., J. Mater. Chem. A 5 (4), 1434 (2017). https://doi.org/10.1039/c6ta09174a

    Article  Google Scholar 

  31. F. Bouhjar, M. Mollar, S. Ullah, B. Marí, and B. Bessaïs, J. Electrochem. Soc. 165 (2), H30 (2018). https://doi.org/10.1149/2.1131802jes

    Article  Google Scholar 

  32. B. Gu, et al., Nanomaterials 12 (24) (2022). https://doi.org/10.3390/nano12244415

  33. Y. Guo, et al., Nano Energy 38, 193 (2017). https://doi.org/10.1016/j.nanoen.2017.05.026

    Article  Google Scholar 

  34. F. Bouhjar, L. Derbali, B. Marí, and B. Bessaïs, Int. J. Hydrogen Energy 45 (20), 11492 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.215

    Article  Google Scholar 

  35. T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, Nat. Commun. 4, 1 (2013). https://doi.org/10.1038/ncomms3885

    Article  Google Scholar 

  36. H. A. Al-Khanbashi, W. Shirbeeny, A. A. Al-Ghamdi, L. M. Bronstein, and W. E. Mahmoud, Ceram. Int. 40, 1927 (2014).

    Article  Google Scholar 

  37. S. S. Shinde, R. A. Bansode, C. H. Bhosale, and K. Y. Rajpure, J. Semicond. 32 (1) (2011). https://doi.org/10.1088/1674-4926/32/1/013001

  38. C. Venkata Reddy, I. N. Reddy, B. Akkinepally, K. R. Reddy, and J. Shim, J. Alloys Compd. 814, 152349 (2020). https://doi.org/10.1016/j.jallcom.2019.152349

  39. S. Baskoutas, P. Poulopoulos, V. Karoutsos, M. Angelakeris, and N. K. Flevaris, Chem. Phys. Lett. 417 (4–6), 461 (2006). https://doi.org/10.1016/j.cplett.2005.10.068

    Article  ADS  Google Scholar 

  40. M. Abaker, et al., J. Phys. D. Appl. Phys. 44 (42) (2011). https://doi.org/10.1088/0022-3727/44/42/425401

  41. Z. Zhang, M. F. Hossain, and T. Takahashi, Appl. Catal. B Environ. 95 (3–4), 423 (2010). https://doi.org/10.1016/j.apcatb.2010.01.022

    Article  Google Scholar 

  42. B. S. Zou and V. Volkov, J. Phys. Chem. Solids. 61, 757 (2000).

    Article  ADS  Google Scholar 

  43. H. Fei, X. Ai, M. Gao, Y. Yang, T. Zhang, and J. Shen, J. Lumin. 66–67, 345 (1996).

    Google Scholar 

  44. B. S. Zou, W. Huang, M. Y. Han, S. F. Y. Li, X. C. Wu, Y. Zhang, J. S. Zhang, P. F. Wu, and R. Y. Wang, J. Phys. Chem. Solids 58, 1315 (1997).

    Article  ADS  Google Scholar 

  45. Y. P. He, Y. M. Miao, C. R. Li, S. Q. Wang, L. Cao, S. S. Xie, G. Z. Yang, B. S. Zou, and C. Burda, Phys. Rev. B 71, 125411 (2005).

  46. S. Shen, C. X. Kronawitter, J. Jiang, S. S. Mao, and L. Guo, Nano Res. 5 (5), 327 (2012).

    Article  Google Scholar 

  47. A. Rufus, N. Sreeju, and D. Philip, J. Phys. Chem. Solids 124, 221 (2019).

    Article  ADS  Google Scholar 

  48. Ch. Venkata Reddy, I. Neelakanta Reddy, B. Akkinepally, K. Raghava Reddy, and J. Shim, J. Alloys Compd. 814, 152349 (2020).

  49. H. Khan and I. K. Swati, Ind. Eng. Chem. Res. 55, 6619 (23) (2016).

  50. F. Bouhjar, L. Derbali, B. Marí, and B. Bessaïs, Sol. Energy Mater. Sol. Cells 195, 241 (2019).

    Article  Google Scholar 

  51. Y. Zhang, W. J. Liu, C. F. Wu, T. Gong, J. Q. Wei, M. X. Ma, K. L. Wang, M. L. Zhong, and D. H. Wu, Mater. Res. Bull. 43, 3490 (2008).

    Article  Google Scholar 

  52. T. T. Hien, et al., J. Electrochem. Soc. 166 (15), H743 (2019). https://doi.org/10.1149/2.0621914jes

    Article  Google Scholar 

  53. S. Shen, et al., Nano Energy 1, 732 (2012).

    Article  Google Scholar 

  54. W. Cheng, et al., J. Phys. Chem. C 116, 24060 (2012).

    Article  ADS  Google Scholar 

  55. S. Shen, et al., Nanoscale 5, 9867 (2013).

    Article  ADS  Google Scholar 

  56. S. Shen, et al., J. Mater. Chem. A 1, 14498 (2013).

    Article  Google Scholar 

  57. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, Nano Lett. 11, 2119 (2011).

    Article  ADS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, for funding this research work through Grant no. (221419001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Derbali.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derbali, L., Alkabsh, A., Bouhjar, F. et al. Yttrium Doped α-Fe2O3 Nanorods for Enhanced Optoelectronic Properties and Increased Photocurrent Density. Phys. Solid State 66, 1–9 (2024). https://doi.org/10.1134/S1063783424600407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783424600407

Keywords:

Navigation