Skip to main content
Log in

The Piezoelectricity of AlScN Thin Films under High-Pressure Regime

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This study investigated the structural, mechanical, piezoelectric, and electromechanical properties of AlScN thin films using density functional theory (DFT) under varying levels of applied pressure, ranging from 0 to 20 GPa. The primary focus of this research is to explore the feasibility of optimizing AlScN thin films for surface acoustic wave (SAW) applications through pressure-induced modifications. Our findings reveal two significant outcomes. First, we observe a notable increase in the elastic constant C33 as a function of pressure. This increase signifies a substantial enhancement in material stiffness, directly influencing wave propagation and velocity within the thin films. Second, a remarkable 68% improvement in the piezoelectric constant, d33, is identified for Al0.75Sc0.25N at an applied pressure of 20 GPa compared to Al0.75Sc0.25N at 0 GPa. This enhancement has a profound impact on the electromechanical coupling characteristics of the material. These results underscore the potential for tuning the piezoelectric response of AlScN thin films using applied pressure, offering a promising avenue for enhancing the performance of SAW-based AlScN devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. D. Morgan, Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic, 2010).

    Google Scholar 

  2. Y. Zhang, W. Xuan, D. Zhu, S. Dong, H. Jin, and J. Luo, in 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) (IEEE, 2022), p. 780.

  3. F. Lamanna, V. R. Rizzi, and M. Bhethanabotla, and M. De Vittorio, Sens. Actuators A 315, 112268 (2020).

  4. O. Justice, O. Mukdadi, and D. Korakakis, MRS Online Proc. Lib. 1202, 208–213 (2009).

    Google Scholar 

  5. U. C. Kaletta, P. V. Santos, D. Wolansky, A. Scheit, M. Fraschke, C. Wipf, P. Zaumseil, and C. Wenger, Semiconductor Sci. Technol. 28, 065013 (2013).

  6. A. Ding, M. Reusch, Y. Lu, N. Kurz, R. Lozar, T. Christoph, R. Driad, O. Ambacher, and A. Zukauskaite, in IEEE International Ultrasonics Symposium (IUS) (IEEE, 2018), p. 1.

  7. K. Yang, F. Lin, Z. Wu, D. Fu, L. Wu, and C. Zuo, in IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM) (IEEE, 2022), p. 106.

  8. S. Zhang, W. Y. Fu, D. Holec, C. Humphreys, and M. Moram, J. Appl. Phys. 114, (24), 243516 (2013).

  9. F. Kanouni, F. Laidoudi, S. Amara, and K. Bouamama, Acoust. Phys. 68, 447 (2022).

    Article  ADS  Google Scholar 

  10. M. Park, Z. Hao, R. Dargis, A. Clark, and A. Ansari, J. Microelectromech. Syst. 29, 490 (2020).

    Article  Google Scholar 

  11. F. Kanouni, S. Amara, A. Assali, F. Arab, and Z. Qin, Sens. Actuators A 307, 111980 (2020).

  12. M. Akiyama, K. Kano, and A. Teshigahara, Appl. Phys. Lett. 95, 162107 (2009).

  13. O. Zywitzki, T. Modes, S. Barth, H. Bartzsch, and P. Frach, Surf. Coat. Technol. 309, 417 (2017).

    Article  Google Scholar 

  14. P. Daoust, P. Desjardins, R. A. Masut, V. Gosselin, and M. Côté, Phys. Rev. Mater. 1, 055402 (2017).

  15. A. Zukauskaite, G. Wingqvist, J. Palisaitis, J. Jensen, P. O. Å. Persson, R. Matloub, P. Kim, Y. Muralt, J. Birch, and L. Hultman, J. Appl. Phys. 111, 093527 (2012).

  16. Y. Lu, M. Reusch, N. Kurz, A. Ding, T. Christoph, M. Preacher, L. Kirste, O. Ambacher, and A. Žukauskaitė, APL Mater. 6, 076105 (2018).

  17. S. Manna, Design and Discovery of New Piezoelectric Materials Using Density Functional Theory, PhD Thesis (Colorado School of Mines, 2018).

  18. F. Tasnádi, B. Alling, C. Höglund, G. Wingqvist, J. Birch, L. Hultman, and I. A. Abrikosov, Phys. Rev. Lett. 104, 137601 (2010).

  19. M. Park, Z. Hao, R. Dargis, and A. Clark, J. Microelectromech. Syst. 29, 490 (2020).

    Article  Google Scholar 

  20. P. Van Camp, V. Van Doren, and J. Devreese, Phys. Rev. B 44, 9056 (1991).

    Article  ADS  Google Scholar 

  21. N. Christensen and I. Gorczyca, Phys. Rev. B 47, 4307 (1993).

    Article  ADS  Google Scholar 

  22. D. Zagorac, J. Zagorac, M. Djukic, and D. Jordanov, and B. Matović, Theor. Appl. Fract. Mech. 103, 102289 (2019).

  23. M. Ueno, A. Onodera, O. Shimomura, and K. Ta-kemura, Phys. Rev. B 45, 10123 (1992).

    Article  ADS  Google Scholar 

  24. H. Yu, F. Peng, H. Liang S. Guan, L. Tan, Z. Xiong, X. Xiang, L. Lei, Q. Li, and D. He, J. Phys. Chem. C 123, 28437 (2019).

    Article  MathSciNet  Google Scholar 

  25. L. E. McNeil, M. Grimsditch, and R. H. French, J. Am. Ceram. Soc. 76, 1132 (1993).

    Article  Google Scholar 

  26. Z. Almaghbash, O. Arbouche, A. Dahani, A. Cherifi, M. Belabbas, and B. Djellouli, J. Comput. Electron. 20, 2420 (2021).

    Article  Google Scholar 

  27. N. Kurz, A. Ding, D. F. Urban, Y. Lu, L. Kirste, N. M. Feil, A. Žukauskaitė, and O. Ambacher, J. Appl. Phys. 126, 075106 (2019).

  28. M. A. Caro, S. Zhang, T. Riekkinen, M. Ylilammi, M. A. Moram, O. Lopez-Acevedo, J. Molarius, T. Lau-rila, J. Phys.: Condens. Matter 27, 245901 (2015).

  29. K. Umeda, H. Kawai, A. Honda, M. Akiyama, T. Kato, and T. Fukura, in IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), p. 733.

  30. M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, Adv. Mater. 21, 593 (2009).

    Article  Google Scholar 

  31. H. Yazaki, T. Soutome, R. Karasawa, S. Takayanagi, K. Yoshida, and T. Yanagitani, in IEEE International Ultrasonics Symposium (IUS) (IEEE, 2018), p. 1.

  32. G. Wingqvist, Microsyst. Technol. 18, 1213 (2012).

    Article  Google Scholar 

Download references

Funding

The General Directorate of Scientific Research and Technological Development DGRSDT of Algeria supported this work. The High-Performance Computing Network of the University of Setif 1 is acknowledged for computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fares Kanouni.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanouni, F., Arab, F., Amara, S. et al. The Piezoelectricity of AlScN Thin Films under High-Pressure Regime. Phys. Solid State 65, 111–118 (2023). https://doi.org/10.1134/S1063783423600309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783423600309

Keywords:

Navigation