Skip to main content
Log in

Conduction Mechanisms and Thermoelectric Properties of Semimetallic CaSi and CaSi2 Films on Si(100) and Si(111) Substrates

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nanocrystalline CaSi films with thicknesses from 80 to 130 nm were grown on high-resistance silicon substrates with orientations (111) and (100) by the methods of low-temperature (190–330°C) molecular-beam epitaxy and low-temperature (330°C) solid-phase epitaxy, for which the microstructure, phase composition, and crystal structures were studied. It is found that the polycrystalline, nanocrystalline (NC), and amorphous CaSi and CaSi2 films are characterized by preferential contribution of holes in the range 1.4–300 K. In magnetic fields 1–4 T and at temperatures 40–100 K, a giant linear magnetoresistive effect (MRE) (to 500%) was observed for the first time in CaSi films with the contribution of another CaSi2 phase. In CaSi2 film containing another phase (CaSi), peaks are detected on the temperature dependences of the resistivity and the Hall coefficient that correspond to a phase transition. In addition, in this film, the transition from the positive MRE to negative MRE is observed at Т = 120–200 K. This effect is not observed in the single-phase CaSi2 film, which corresponds to a certain reconstruction of carrier flows in a magnetic field only in the two-phase system. The study of the thermoelectric properties of CaSi and CaSi2 films shows that the semimetallic type of the conduction in them leads to the independence of the positive Seebeck coefficient Т = 330–450 K. It is found that the maximum contribution to the Seebeck coefficient and the power factor are observed in the amorphous CaSi film in the case of the presence of some fraction of NC Ca2Si phase. In the single-phase CaSi2 films, the Seebeck coefficient and the power factor are halved due to an increase in the hole concentration as compared to the CaSi films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. P. Manfrietti, M. L. Fornasini, and A. Palenzona, Intermetallics 8, 223 (2000). https://doi.org/10.1016/S0966-9795(99)00112-0

    Article  Google Scholar 

  2. S. Lebegue, Phys. Rev. B 72, 085103 (2005).

    Article  ADS  Google Scholar 

  3. O. Bisi, L. Braikovich, C. Carbone, I. Lindau, A. Iandelli, G. L. Olcese, and A. Palenzona, Phys. Rev. B 40, 10194 (1989).

    Article  ADS  Google Scholar 

  4. S. Fahy and D. R. Hamann, Phys. Rev. B 41, 7587 (1990).

    Article  ADS  Google Scholar 

  5. M. Affronte, O. Laborde, G. L. Olsece, and A. Palenzona, J. Alloys Compd. 274, 68 (1998).

    Article  Google Scholar 

  6. J. Tani and H. Kido, Comput. Mater. Sci. 97, 36 (2015).

    Article  Google Scholar 

  7. N. G. Galkin, K. N. Galkin, A. V. Tupkalo, D. L. Goroshko, E. A. Chusovitin, Z. Fogarassy, and B. Pécz, Jpn. J. Appl. Phys. 59, SFFA12 (2020).

  8. N. G. Galkin, K. N. Galkin, A. V. Tupkalo, S. A. Dotsenko, Z. Fogarassy, and B. Pécz, Int. J. Nanosci. 18, 1940014 (2019).

    Article  Google Scholar 

  9. N. G. Galkin, K. N. Galkin, I. M. Chernev, D. L. Goroshko, E. A. Chusovitin, A. V. Shevlyagin, A. A. Usenko, and V. V. Khovailo, Dif. Def. Forum 386, 3 (2018).

  10. N. G. Galkin, S. A. Dotsenko, K. N. Galkin, D. B. Migas, V. O. Bogorodz, A. B. Filonov, V. E. Borisenko, I. Cora, B. Pécz, D. L. Goroshko, A. V. Tupkalo, E. A. Chusovitin, and E. Y. Subbotin, J. Alloys Compd. 770, 710 (2019).

    Article  Google Scholar 

  11. E. C. Reyes and R. Nesper, J. Phys. Chem. C 116, 2536 (2012).

    Article  Google Scholar 

  12. L. Schnatmann, K. Geishendorf, M. Lammel, C. Damm, S. Novikov, A. Thomas, A. Burkov, H. Reith, K. Ni-elsch, and G. Schierning, Adv. Electron. Mater. 6, 1900857 (2020). https://doi.org/10.1021/jp205825d

    Article  Google Scholar 

  13. Y. P. Yu and M. Cardona, Fundamental of Semiconductors: Physics and Materials Properties, 4th ed. (Springer, Heidelberg, 2010). https://doi.org/10.1002/aelm.2019008

    Book  Google Scholar 

  14. A. A. Abrikosov, Europhys. Lett. 49, 789 (2000).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Chair of functional nanosystems and high-temperature materials of National Research and Technology University MISiS for the chance to perform the thermoelectric measurements on their experimental equipment.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00123_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Galkin.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkin, N.G., Galkin, K.N., Tupkalo, A.V. et al. Conduction Mechanisms and Thermoelectric Properties of Semimetallic CaSi and CaSi2 Films on Si(100) and Si(111) Substrates. Phys. Solid State 64, 616–623 (2022). https://doi.org/10.1134/S1063783422120034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422120034

Keywords:

Navigation