Skip to main content
Log in

Temperature Evolution of the Interaction of Relaxation Processes with Local Dynamics at Terahertz Frequencies in Polymers with Hydrogen Bonds

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

At terahertz frequencies, the torsional vibration motion is associated with dielectric relaxation in disordered solids with hydrogen bonds. The interaction between these processes is still poorly understood, especially at temperatures below the glass transition temperature especially important for the molecular mobility in polymers. We studied polymers with hydrogen bonds (polyamide-6 and polyvinyl chloride) at temperatures from 90 to 400 K using far IR spectroscopy in the range of 0.25–4 THz. The following three common features were observed in the spectrum of dielectric losses ε''(ν): (i) at temperatures well below the glass transition temperature (Tg), these losses are represented by the low-frequency wing of the absorption peak due to libration of monomer units of the polymers; (ii) in the range of 0.7Tg < T < Tg, additional temperature dependent losses are observed, which may be associated with the manifestation of secondary relaxation processes; (iii) at temperatures above Tg, the primary α relaxation processes predominantly contribute to terahertz losses. The obtained results show that the evolution of terahertz losses with temperature is caused by a change in the structure of hydrogen bonds, which seems to be common for systems with similar intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. Kremer and A. Loidl, The Scaling of Relaxation Processes (Springer Int., Leipzig, 2018).

    Book  Google Scholar 

  2. G. Biroli and J. P. Garahan, J. Chem. Phys. 138, 12A301 (2013).

  3. E. P. J. Parrot and A. Zeitler, Appl. Spectrosc. 69, 1 (2015).

    Article  ADS  Google Scholar 

  4. W. Götze, Complex Dynamics of Glass-Forming Liquids (Oxford Univ. Press, New York, 2009).

    MATH  Google Scholar 

  5. V. N. Novikov, A. P. Sokolov, B. Stube, N. V. Surovtsev, E. Duval, and A. Mermet, J. Chem. Phys. 107, 1057 (1997).

    Article  ADS  Google Scholar 

  6. S. D. Bembenek and B. B. Laird, J. Chem. Phys. 114, 2340 (2001).

    Article  ADS  Google Scholar 

  7. V. A. Bershtein and V. A. Ryzhov, Adv. Pol. Sci. 114, 43 (1994).

    Article  Google Scholar 

  8. K. L. Ngai, Relaxation and Diffusion in Complex Systems (Oxford Univ. Press, New York, 2011).

    Book  Google Scholar 

  9. S. Kastner, M. Köhler, V. Goncharov, P. Lunkenheimer, and A. Loidl, J. Non-Cryst. Solids 357, 510 (2011).

    Article  ADS  Google Scholar 

  10. V. A. Ryzhov and M. V. Tonkov, in Molecular Spectroscopy, Ed. by G. S. Denisov (Leningr. Gos. Univ., Leningrad, 1973), p. 108 [in Russian].

    Google Scholar 

  11. L. Duvillaret, F. Garet, and J.-L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).

    Article  ADS  Google Scholar 

  12. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, J. Korean Phys. Soc. 40, 513 (2006).

    Google Scholar 

  13. S. Wietzke, C. Janden, M. Reuter, B. M. Ficsher, and M. Koch, J. Mol. Struct. 1006, 41 (2011).

    Article  ADS  Google Scholar 

  14. A. V. R. Warrier and S. Krimm, Macromolecules 3, 709 (1970).

    Article  ADS  Google Scholar 

  15. W. F. X. Frank and H. Fiedler, Infrared Phys. 19, 481 (1979).

    Article  ADS  Google Scholar 

  16. A. Barkatt and C. A. Angell, J. Chem. Phys. 70, 901 (1979).

    Article  ADS  Google Scholar 

  17. V. A. Bershtein and V. M. Egorov, Differential Scanning Calorimetry in the Physicochemistry of Polymers (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  18. Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of Macromolecules (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  19. R. Zorn, A. Alegria, A. Arbe, J. Colmenero, D. Richter, and B. Frick, J. Non-Cryst. Solids 235–237, 169 (1998).

    Article  ADS  Google Scholar 

  20. N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, Appl. Phys. Lett. 85, 4010 (2004).

    Article  ADS  Google Scholar 

  21. G. Wypych, PVC Degradation and Stabilization (ChemTec Publ., Toronto, 2008), p. 466.

    Google Scholar 

  22. E. Duval, T. Achibat, A. Boukenter, B. Varrel, R. Calemczuk, and B. Salce, J. Non-Cryst. Solids 190, 258 (1995).

    Article  ADS  Google Scholar 

  23. P. Papanek, J. E. Fischer, and N. S. Murthy, Macromolecules 35, 4175 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ryzhov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhov, V.A. Temperature Evolution of the Interaction of Relaxation Processes with Local Dynamics at Terahertz Frequencies in Polymers with Hydrogen Bonds. Phys. Solid State 64, 124–128 (2022). https://doi.org/10.1134/S1063783422030040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422030040

Keywords:

Navigation