Skip to main content
Log in

Luminescent Properties of Colloidal Ag2S Quantum Dots for Photocatalytic Applications

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structural and optical properties of colloidal Ag2S quantum dots in different environments are studied. With the help of transmission electron microscopy, X-ray diffraction analysis, and X-ray Energy-Dispersive analysis, the formation of Ag2S quantum dots with average size of 2–3 nm with monoclinic crystal lattice, and Ag2/SiO2 core–shell systems based on them, has been enstablished. A change in the luminescence quantum yield of the quantum dots in the case of a change of the surface environment is shown. Decoration of TiO2 nanoparticles with a size of 10–15 nm with Ag2S quantum dots is performed and the effect of the structure of the interfaces of the quantum dots and their environment (2-mercaptopropionic acid, water, ethylene glycol, SiO2 dielectric shells with thicknesses of 0.6 and 2.0 nm) on the formation of TiO2–Ag2S heterosystem is analyzed. The signs of charge phototransfer upon adsorption onto the surface of TiO2 nanoparticles are found for the Ag2S quantum dots passivated with 2-mercaptopropionic acid. The signs of appearance of reactive oxygen species as a result of charge phototransfer in a TiO2–Ag2S heterosystem are found based on the observation of photobleaching of methylene blue upon excitation of the system from the region outside of TiO2 fundamental absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. L. Chou, B.-J. Hwang, and C.-L. Sun, in New Future Developments in Catalysis (Elsevier, Amsterdam, 2013), p. 217. https://doi.org/10.1016/B978-0-444-53880-2.00014-4

    Book  Google Scholar 

  2. J. J. Ng, K. H. Leong, L. C. Sim, W.-D. Oh, C. Dai, and P. Saravanan, in Nanomaterials for Air Remediation (Elsevier, Amsterdam, 2020), p. 193. https://doi.org/10.1016/B978-0-12-818821-7.00010-5

    Book  Google Scholar 

  3. M. Sakar, R. M. Prakash, K. Shinde, and G. R. Balakrishna, Int. J. Hydrogen Energy 45, 7691 (2020). https://doi.org/10.1016/j.ijhydene.2019.04.222

    Article  Google Scholar 

  4. A. Kubackaa, U. Caudillo-Flores, I. Barba-Nieto, and M. Fernández-García, Appl. Catal. A: Gen. 610, 117966 (2021). https://doi.org/10.1016/j.apcata.2020.117966

    Article  Google Scholar 

  5. S. Shen, C. Kronawitter, and G. Kiriakidis, J. Materiomics 3, 1 (2017).https://doi.org/10.1016/j.jmat.2016.12.004

  6. M. Pawar, S. T. Sendoğdular, and P. Gouma, J. Nanomater. 2018, 5953609 (2018). https://doi.org/10.1016/j.jmat.2016.12.004

    Article  Google Scholar 

  7. A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735 (1995). https://doi.org/10.1021/cr00035a013

    Article  Google Scholar 

  8. K. Nakata and A. Fujishima, J. Photochem. Photobiol. C 13, 169 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  Google Scholar 

  9. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D. W. Bahnemann, Chem. Rev. 114, 9919 (2014). https://doi.org/10.1021/cr5001892

    Article  Google Scholar 

  10. Z. Bao, S. Wang, X. Yu, Y. Gao, and Z. Wen, Water Air Soil Pollut. 230, 169 (2019). https://doi.org/10.1007/s11270-019-4219-5

    Article  ADS  Google Scholar 

  11. O. R. Fonseca-Cervantes, A. Perez-Larios, V. H. Ro-mero Arellano, B. Sulbaran-Rangel, and C. A. Guzman Gonzalez, Processes 8, 1032 (2020). https://doi.org/10.3390/pr8091032

    Article  Google Scholar 

  12. M. Janczarek and E. Kowalska, Catalysts 7, 317 (2017). https://doi.org/10.3390/catal7110317

    Article  Google Scholar 

  13. S. B. Rawal, S. Bera, D. Lee, D.-J. Jang, and W. In Lee, Catal. Sci. Technol. 3, 1822 (2013). https://doi.org/10.1039/C3CY00004D

    Article  Google Scholar 

  14. C. del Cacho, O. Geiss, P. Leva, S. Tirendi, and J. Barrero-Moreno, in Nanotechnology in Eco-Efficient Construction (Woodhead, 2013), p. 343. https://doi.org/10.1533/9780857098832.3.343

    Book  Google Scholar 

  15. I. Zumeta-Dube, V.-F. Ruiz-Ruiz, D. Diaz, S. Rodil-Posadas, and A. Zeinert, Phys. Chem. C 118, 11495 (2014). https://doi.org/10.1021/jp411516a

    Article  Google Scholar 

  16. A. Badawi, Phys. E (Amsterdam, Neth.) 109, 107 (2019). https://doi.org/10.1016/j.physe.2019.01.018

  17. R. Gui, H. Jin, Z. Wang, and L. Tan, Coord. Chem. Rev. 296, 91 (2015). https://doi.org/10.1016/j.ccr.2015.03.023

    Article  Google Scholar 

  18. R. Gui, A. Wan, X. Liu, W. Yuan, and H. Jin, Nanoscale 6, 5467 (2014). https://doi.org/10.1039/C4NR00282B

    Article  ADS  Google Scholar 

  19. R. Gui, J. Sun, D. Liu, Y. Wang, and H. Jin, Dalton Trans. 43, 16690 (2014). https://doi.org/10.1039/C4DT00699B

    Article  Google Scholar 

  20. R. Tang, J. Xue, B. Xu, D. Shen, G. P. Sudlow, and S. Achilefu, ACS Nano 9, 220 (2015). https://doi.org/10.1021/nn5071183

    Article  Google Scholar 

  21. Y. Xie, S. H. Yoo, C. Chen, and S. Oh, Mater. Sci. Eng. B 177, 106 (2012). https://doi.org/10.1016/j.mseb.2011.09.021

    Article  Google Scholar 

  22. B. Liu, D. Wang, Y. Zhang, H. Fan, Y. Lin, T. Jiang, and T. Xie, Dalton Trans. 42, 2232 (2014). https://doi.org/10.1039/C2DT32031B

    Article  Google Scholar 

  23. K. Nagasuna, T. Akita, M. Fujishima, and H. Tada, Langmuir 27, 7294 (2011). https://doi.org/10.1021/la200587s

    Article  Google Scholar 

  24. M. Smirnov and O. Ovchinnikov, J. Lumin. 227, 117526 (2020). https://doi.org/10.1016/j.jlumin.2020.117526

    Article  Google Scholar 

  25. O. V. Ovchinnikov, I. G. Grevtseva, M. S. Smirnov, T. S. Kondratenko, A. S. Perepelitsa, S. V. Aslanov, V. U. Khokhlov, E. P. Tatyanina, and A. S. Matsukovich, Opt. Quantum Electron. 52, 198 (2020). https://doi.org/10.1007/s11082-020-02314-8

    Article  Google Scholar 

  26. O. V. Ovchinnikov, M. S. Smirnov, B. I. Shapiro, T. S. Shatskikh, A. S. Perepelitsa, and N. V. Korolev, Semiconductors 49, 373 (2015). https://doi.org/10.1134/S1063782615030173

    Article  ADS  Google Scholar 

  27. C. M. Wilke, C. Petersen, M. A. Alsina, J.-F. Gaillard, and K. A. Gray, Environ. Sci.: Nano 6, 115 (2019). https://doi.org/10.1039/C8EN01159A

    Article  Google Scholar 

  28. X. Liu, L. Zhu, X. Wang, and X. Meng, Env. Sci. Pollut. Res. 27, 13590 (2020). https://doi.org/10.1007/s11356-020-07960-9

    Article  Google Scholar 

  29. T. S. Kondratenko, M. S. Smirnov, O. V. Ovchinnikov, A. I. Zvyagin, T. A. Chevychelova, and I. V. Taydakov, Bull. Lebedev Phys. Inst. 46, 210 (2019). https://doi.org/10.3103/S106833561906006X

    Article  ADS  Google Scholar 

  30. O. V. Ovchinnikov, S. V. Aslanov, M. S. Smirnov, A. S. Perepelitsa, T. S. Kondratenko, A. S. Selyukov, and I. G. Grevtseva, Opt. Mater. Express 11, 89 (2021). https://doi.org/10.1364/OME.411432

    Article  ADS  Google Scholar 

  31. O. V. Ovchinnikov, S. V. Aslanov, M. S. Smirnov, I. G. Grevtseva, and A. S. Perepelitsa, RSC Adv. 9, 37312 (2019).https://doi.org/10.1039/C9RA07047H

  32. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006). https://doi.org/10.1007/978-0-387-46312-4

    Book  Google Scholar 

  33. S. Reindl, A. Penzkofer, S.-H. Gong, M. Landthaler, R. M. Szeimies, C. Abels, and W. Baumler, J. Photochem. Photobiol. A 105, 65 (1997). https://doi.org/10.1016/S1010-6030(96)04584-4

    Article  Google Scholar 

  34. A. J. Frueh, Z. Kristallogr. 110, 136 (1958).

    Article  Google Scholar 

  35. H. F. Poulsen, J. Neuefeind, H.-B. Neumann, and J. R. Schneider, J. Non-Cryst. Solids 188, 63 (1995). https://doi.org/10.1016/0022-3093(95)00095-X

    Article  ADS  Google Scholar 

  36. S. Music, N. Filipovic-Vincekovic, and L. Sekovanic, Braz. J. Chem. Eng. 28, 89 (2011). https://doi.org/10.1590/S0104-66322011000100011

    Article  Google Scholar 

  37. H. Ijadpanah-Saravy, M. Safari, A. Khodadadi-Darban, and A. Rezaei, Anal. Lett. 47, 1772 (2014). https://doi.org/10.1080/00032719.2014.880170

    Article  Google Scholar 

  38. S. Lin, Y. Feng, X. Wen, P. Zhang, S. Woo, S. Shrestha, G. Conibeer, and S. Huang, J. Phys. Chem. 119, 867 (2015). https://doi.org/10.1021/jp511054g

    Article  Google Scholar 

  39. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988). https://doi.org/10.1103/PhysRevB.38.9797

    Article  ADS  Google Scholar 

  40. A. B. Murphy, Sol. Energy Mater. Sol. Cells 91, 1326 (2007). https://doi.org/10.1016/j.solmat.2007.05.005

    Article  Google Scholar 

  41. V. M. Ievlev, C. B. Kushchev, A. N. Latyshev, L. Yu. Leonova, O. V. Ovchinnikov, M. S. Smirnov, E. V. Popova, A. V. Kostyuchenko, and S. A. Soldatenko, Semiconductors 48, 848 (2014).

    Article  ADS  Google Scholar 

  42. A. S. Perepelitsa, O. V. Ovchinnikov, M. S. Smirnov, T. S. Kondratenko, I. G. Grevtseva, S. V. Aslanov, and V. Y. Khokhlov, J. Lumin. 231, 117805 (2021). https://doi.org/10.1016/j.jlumin.2020.117805

    Article  Google Scholar 

  43. A. Mills and J. Wang, J. Photochem. Photobiol. A 124, 123 (1999). https://doi.org/10.1016/S1010-6030(99)00143-4

    Article  Google Scholar 

  44. S. Otsuka-Yao-Matsuo, T. Omata, S. Ueno, and M. Kita, Mater. Trans. 44, 2124 (2003).

    Article  Google Scholar 

  45. J. Yao and C. Wang, Int. J. Photoenergy 2010, 643182 (2010). https://doi.org/10.1155/2010/643182

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The structural studies performed on a THERMO ARL X’TRA diffractometer (ThermoFisher, Switzerland) and a LIBRA 120 transmission electron microscope (CarlZeiss, Germany) were performed using the equipment of the Center for Collective Use of Scientific Equipment of the Voronezh State University.

Funding

This work was financially supported by the Russian Foundation for Basic Research (grant no. 20-32-90167 Aspiranty).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Aslanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, O.V., Smirnov, M.S., Aslanov, S.V. et al. Luminescent Properties of Colloidal Ag2S Quantum Dots for Photocatalytic Applications. Phys. Solid State 64, 71–79 (2022). https://doi.org/10.1134/S1063783422010140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422010140

Keywords:

Navigation