Skip to main content
Log in

Tunnel Current between Structural Elements of Thin Graphene/Nanotube Films

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

On the basis of the constructed atomistic models of graphene/nanotube films with different numbers of nanotubes in supercells, in silico studies of the regularities of non-uniform density distribution, which determine the presence of an island structure in such films, are carried out. As a result of quantum molecular and dynamic simulation, it is established that thin tubes of sub-nanometer diameter are wrapped in graphene sheets, which makes them energetically steady and stable. Tunnel contacts between individual film fragments that are not covalently bonded are also studied, in particular, between graphene sheets with different topology of the contacting edges, zigzag and armchair, depending on the distance between them, and between tubes of various chiralities including (6,3), (4,4), (6,5), (12,6), and (16,0). It is found that the tunnel contacts of tubes with a semiconductor type of conductivity are characterized by the presence of voltage intervals with negative differential resistance in IV characteristics. Such voltage intervals are not observed at all in tubes with a metallic character of conductivity. The new knowledge obtained is important for estimating the electrical conductivity of such films, two thirds of which are semiconductor tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Liu, R. Li, H. Li, Y. Li, J. Yi, H. Wang, X. Zhao, P. Liu, J. Guo, and L. Liu, New Carbon Mater. 33, 481 (2018).

    Article  ADS  Google Scholar 

  2. A. Yu. Gerasimenko, A. V. Kuksin, Y. P. Shaman, E. P. Kitsyuk, Y. O. Fedorova, A. V. Sysa, A. A. Pavlov, and O. E. Glukhova, Nanomaterials 11, 187 (2021).

    Article  Google Scholar 

  3. X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M. Romo-Herrera, H. Son, Y. P. Hsieh, A. Reina, J. Kong, M. Terrones, and M. S. Dresselhaus, Science (Washington, DC, U. S.) 323 (5922), 1701 (2009).

    Article  ADS  Google Scholar 

  4. C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009).

    Article  ADS  Google Scholar 

  5. A. Chuvilin, J. C. Meyer, G. Algara-Siller, and U. Kaiser, New J. Phys. 11, 083019 (2009).

    Article  ADS  Google Scholar 

  6. Y. He, H. Dong, T. Li, C. Wang, W. Shao, Y. Zhang, L. Jiang, and W. Hu, Appl. Phys. Lett. 97, 133301 (2010).

    Article  ADS  Google Scholar 

  7. H. M. Wang, Z. Zheng, Y. Y. Wang, J. J. Qiu, Z. B. Guo, Z. X. Shen, and T. Yu, Appl. Phys. Lett. 96, 023106 (2010).

    Article  ADS  Google Scholar 

  8. D. A. Ryndyk, J. Bundesmann, M. H. Lin, and K. Richter, Phys. Rev. B 86, 195425 (2012).

    Article  ADS  Google Scholar 

  9. A. M. Ionescu and H. Riel, Nature (London, U.K.) 479, 329 (2011).

    Article  ADS  Google Scholar 

  10. A. D. Franklin and Z. Chen, Nat. Nanotechnol. 5, 858 (2010).

    Article  ADS  Google Scholar 

  11. H. Alhassen, V. Antony, A. Ghanem, M. M. A. Yajadda, Z. J. Han, and K. K. Ostrikov, Chirality 26, 683 (2014).

    Article  Google Scholar 

  12. S. Yick, M. M. A. Yajadda, A. Bendavid, Z. J. Han, and K. K. Ostrikov, Appl. Phys. Lett. 102, 233111 (2013).

    Article  ADS  Google Scholar 

  13. A. Salehi-Khojin, F. Khalili-Araghi, M. A. Kuroda, K. Y. Lin, J. P. Leburton, and R. I. Masel, ACS Nano 5, 153 (2011).

    Article  Google Scholar 

  14. M. M. Aghili Yajadda, J. Phys. Chem. C 120, 3646 (2016).

    Article  Google Scholar 

  15. C. Berthod and T. Giamarchi, Phys. Rev. B 84, 155414 (2011).

    Article  ADS  Google Scholar 

  16. Mizar Software. http://nanokvazar.ru. Accessed March 10, 2021.

  17. V. L. Katkov and V. A. Osipov, JETP Lett. 98, 689 (2013).

    Article  ADS  Google Scholar 

  18. B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho, C. Cevallos, M. Y. Deshaye, T. Dumitrica, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, et al., J. Chem. Phys. 152, 124101 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by a grant from the President of the Russian Federation (project no. MK-2289.2021.1.2) and a grant from the Russian Science Foundation (project no. 21-19-00226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Glukhova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glukhova, O.E., Slepchenkov, M.M. & Kolesnichenko, P.A. Tunnel Current between Structural Elements of Thin Graphene/Nanotube Films. Phys. Solid State 64, 49–55 (2022). https://doi.org/10.1134/S1063783422010073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422010073

Keywords:

Navigation