Skip to main content
Log in

Formation of the Cu6Sn5 Intermetallics in Cu/Sn Thin Films

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The formation of the Cu6Sn5 intermetallic in Sn(55nm)/Cu(30nm) thin-film bilayers has been studied upon heating the film sample from room temperature to 300°C directly in a column of a transmission electron microscope in the electron diffraction mode with recording electron diffraction patterns. The thin films synthesized by the solid-state reaction have been found to be single-phase and consist of the η-Cu6Sn5 hexagonal phase (95‒260°C). It has been suggested basing on the effective interdiffusion coefficient (5 × 10‒16 m2/s) estimated in the course of the reaction that the main mechanism of the formation of the Cu6Sn5 thin films is diffusion along grain boundaries and dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Cheng, C. M. Huang, and M. Pecht, Microelectron. Reliab. 75, 77 (2017).https://doi.org/10.1016/j.microrel.2017.06.016

  2. A. Kunwar, J. Hektor, S. Nomoto, Yu. A. Coutinho, and N. Moelans, Int. J. Mech. Sci. 184, 105843 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105843

    Article  Google Scholar 

  3. F. Somidin, H. Maeno, M. A. A. Mohd Salleh, X. Q. Trana, S. D. McDonalda, S. Matsumura, and K. Nogita, Mater. Charact. 138, 113 (2018). https://doi.org/10.1016/j.matchar.2018.02.006

    Article  Google Scholar 

  4. L. Meinshausen, H. Frémont, K. Weide-Zaage, and B. Plano, Microelectron. Reliab. 53, 1575 (2013). https://doi.org/10.1016/j.microrel.2013.07.038

    Article  Google Scholar 

  5. R. Z. Hu, M. Q. Zeng, and M. Zhu, Electrochim. Acta 54, 2843 (2009). https://doi.org/10.1016/j.electacta.2008.11.021

    Article  Google Scholar 

  6. Ya. Xing, S. Wang, B. Fang, Y. Feng, and S. Zhang, Microporous Mesoporous Mater. 261, 237 (2018). https://doi.org/10.1016/j.micromeso.2016.11.036

    Article  Google Scholar 

  7. G. Zeng, S. D. McDonald, J. J. Read, Q. Gu, and K. Nogita, Acta Mater. 69, 135 (2014). https://doi.org/10.1016/j.Actamat.2014.01.027

    Article  ADS  Google Scholar 

  8. Y. Q. Wu, J. C. Barry, T. Yamamoto, Q. F. Gu, S. D. McDonald, S. Matsumura, H. Huang, and K. Nogita, Acta Mater. 60, 6581 (2012). https://doi.org/10.1016/j.Actamat.2012.08.024

    Article  ADS  Google Scholar 

  9. D. K. Mu, S. D. McDonald, J. Read, H. Huang, and K. Nogita, Solid State Mater. Sci. 20, 55 (2016). https://doi.org/10.1016/j.cossms.2015.08.001

    Article  Google Scholar 

  10. M. Y. Li, Z. H. Zhang, and J. M. Kim, Appl. Phys. Lett. 98, 201901 (2011).https://doi.org/10.1063/1.3590715

  11. N. Saunders and A. P. Miodownik, Bull. Alloys Phase Diagr. 11, 278 (1990).

    Article  Google Scholar 

  12. Powder Diffraction File (PDF 4+, 2018), Inorganic Phases Database (Int. Center Diffract. Data (ICDD), Swarthmore, PA, USA, 2018). http://www.icdd.com/products/pdf4.htm.

  13. A. Makovec, G. Erdélyi, and D. L. Beke, Thin Solid Films 520, 2362 (2012). https://doi.org/10.1016/j.tsf.2011.11.013

    Article  ADS  Google Scholar 

  14. Y. Zhong, C. Wang, J. Wang, H. Ma, S. Krishnamoorthy, V. Paley, Z. Weng, and S. Jin, Mater. Res. Lett. 8, 431 (2020). https://doi.org/10.1080/21663831.2020.1791272

    Article  Google Scholar 

  15. Z. H. Zhang, C. W. Wei, J. J. Han, H. J. Cao, H. T. Chen, and M. Y. Li, Acta Mater. 183, 340 (2020). https://doi.org/10.1016/j.Actamat.2019.11.032

    Article  ADS  Google Scholar 

  16. V. G. Myagkov, L. E. Bykova, V. S. Zhigalov, A. A. Matsynin, D. A. Velikanov, and G. N. Bondarenko, J. Alloys Compd. 861, 157938 (2021). https://doi.org/10.1016/j.jallcom.2020.157938

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V.S. Zhigalov for preparing the samples for investigations.

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 19-43-240003. The electron microscopy study was carried out at the Krasnoyarsk Regional Center for Collective Use of the Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences and at the Laboratory of Electron Microscopy of the Center for Collective Use of the Siberian Federal University within the state assignment of the Ministry of Science and Higher Education of the Russian Federation, research theme code FSRZ-2020-0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Bykova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykova, L.E., Zharkov, S.M., Myagkov, V.G. et al. Formation of the Cu6Sn5 Intermetallics in Cu/Sn Thin Films. Phys. Solid State 64, 33–37 (2022). https://doi.org/10.1134/S1063783422010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422010048

Keywords:

Navigation