Skip to main content
Log in

Pulsed Laser Irradiation of Light-Emitting Structures with a (Ga,Mn)As Layer

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using a combination of MOC-hydride epitaxy and pulsed laser deposition, InGaAs/GaAs heteronanostructures with a (Ga,Mn)As layer on the surface are obtained, and the influence of the action of a pulsed excimer laser (with a wavelength of 248 nm, pulse duration of ~30 ns, and energy density in the range of 200–360 mJ/cm2) on their radiative, structural, and galvanomagnetic properties is studied. The study is carried out using photoluminescence spectroscopy complemented by the possibility of analyzing radiation polarization characteristics of the structures. The crystalline perfection of the initial and laser-irradiated samples was studied with the use of Raman scattering spectroscopy. The elementary composition of the structures and its distribution over the depth were studied by secondary ion mass spectrometry. The influence of pulsed laser annealing on ferromagnetic properties of heteronanostructures is characterized by the behavior of magnetic field dependences of the Hall resistance and magnetoresistance at temperatures of 10–300 K within the range of magnetic fields of ±3600 Oe. At room temperature, the study was carried out in magnetic fields reaching ±28 000 Oe. The calculated temperature distributions along the sample thickness and in time using the laser annealing model based on solving the problem about heat propagation in a one-dimensional GaAs system with allowance for the (Ga,Mn)As layer on the surface are obtained using original data on the thermal conductivity of structures with a (Ga,Mn)As layer. The data were obtained by the modified frequency division technique (the 3ω method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. O. V. Vikhrova, Yu. A. Danilov, B. N. Zvonkov, A. V. Zdoroveishchev, A. V. Kudrin, V. P. Lesnikov, A. V. Nezhdanov, S. A. Pavlov, A. E. Parafin, I. Yu. Pashenkin, and S. M. Plankina, Phys. Solid State 59, 2150 (2017).

    Article  ADS  Google Scholar 

  2. W. Hai Long, C. Lin, and Z. Jian Hua, Sci. China Phys. Mech. Astron. 56, 99 (2013).

    Article  Google Scholar 

  3. Sh. U. Yuldasheva, Z. A. Yunusova, Y. H. Kwonb, S. H. Leec, R. Ahujad, and T. W. Kanga, Solid State Commun. 263, 38 (2017).

    Article  ADS  Google Scholar 

  4. Y. Jiang, Y. Ji, N. Li, J. Guo, Y. Yuan, W. Liang, and H. Yang, AIP Adv. 11, 025011 (2021).

    Article  ADS  Google Scholar 

  5. O. V. Vikhrova, Yu. A. Danilov, B. N. Zvonkov, I. L. Kalentyeva, Yu. M. Kuznetsov, A. V. Nezhdanov, A. E. Parafin, D. V. Khomitsky, and I. N. Antonov, Phys. Solid State 63, 425 (2021).

    Article  ADS  Google Scholar 

  6. R. T. Blunt, in Proceedings of the CS MANTECH Conference, April 24–27, 2006, Vancouver, British Columbia, Canada, p. 59.

  7. D. J. Kim, D. S. Kim, S. Cho, S. W. Kim, S. H. Lee, and J. C. Kim, Int. J. Thermophys. 25, 281 (2004).

    Article  ADS  Google Scholar 

  8. W. Limmer, M. Glunk, S. Mascheck, A. Koeder, D. Klarer, W. Schoch, K. Thonke, R. Sauer, and A. Waag, Phys. Rev. B 66, 205209 (2002).

    Article  ADS  Google Scholar 

  9. M. J. Seong, S. H. Chun, H. M. Cheong, N. Samarth, and A. Mascarenhas, Phys. Rev. B 66, 033202 (2002).

    Article  ADS  Google Scholar 

  10. E. L. Nagaev, Physics of Magnetic Semiconductors (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  11. L. H. Bennetta and E. D. Torre, J. Appl. Phys. 97, 10E502 (2005).

  12. K. Y. Wang, K. W. Edmonds, R. P. Campion, L. X. Zhao, C. T. Foxon, and B. L. Gallagher, Phys. Rev. B 72, 085201 (2005).

    Article  ADS  Google Scholar 

  13. B. N. Zvonkov, O. V. Vikhrova, Yu. A. Danilov, Yu. N. Drozdov, A. V. Kudrin, and M. V. Sapozhnikov, Phys. Solid State 52, 2267 (2010).

    Article  ADS  Google Scholar 

  14. J. Paitz, Krist. Tech. 7, 999 (1972).

    Article  Google Scholar 

  15. Z. E. Kun’kova, E. A. Gan’shina, L. L. Golik, Yu. A. Danilov, A. V. Kudrin, V. I. Kovalev, G. S. Zykov, Yu. V. Markin, O. V. Vikhrova, and B. N. Zvonkov, Phys. Solid State 60, 943 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project nos. 19-19-00545 (manufacturing of the structures and main investigations) and 18-72-10061 (study of polarization characteristics of photoluminescence).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Vikhrova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvonkov, B.N., Vikhrova, O.V., Danilov, Y.A. et al. Pulsed Laser Irradiation of Light-Emitting Structures with a (Ga,Mn)As Layer. Phys. Solid State 63, 1593–1600 (2021). https://doi.org/10.1134/S106378342109047X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342109047X

Keywords:

Navigation