Skip to main content
Log in

The Description of the Degree of Reinforcement of Polymer/Carbon Nanotubes Nanocomposites: the “Termite” Limit

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A model of binary random mixtures in the “termite” limit (a random superconducting network) is used to describe the properties of polyurethane/carbon nanotubes nanocomposites. This model is correct and gives a quite accurate quantitative description of the degree of reinforcement of the nanocomposites under consideration. To obtain an accurate description of the characteristic under consideration, the structure of carbon nanotubes should be considered as annular formations, and the critical index in the “termite” limit is determined by the fractal dimension of these formations. The proposed model makes it possible to find out the criterion of obtaining high-modulus nanocomposites of this class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. Meakin and T. A. Witten, Phys. Rev. A 28, 2985 (1983).

    Article  ADS  Google Scholar 

  2. G. V. Kozlov and I. V. Dolbin, Prikl. Fiz., No. 3, 96 (2017).

  3. H. Koerner, W. Liu, M. Alexander, P. Mirau, H. Dowty, and R. A. Vaia, Polymer 46, 4405 (2005).

    Article  Google Scholar 

  4. A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, and J. F. Mareche, Phys. Rev. B 53, 6209 (1996).

    Article  ADS  Google Scholar 

  5. M. Foygel, R. D. Morris, D. Anez, S. French, and V. L. Sobolev, Phys. Rev. B 71, 104201 (2005).

    Article  ADS  Google Scholar 

  6. D. W. Schaefer and R. S. Justice, Macromolecules 40, 8501 (2007).

    Article  ADS  Google Scholar 

  7. B. I. Shklovskii and A. L. Efros, Sov. Phys. Usp. 18, 845 (1975).

    Article  ADS  Google Scholar 

  8. G. V. Kozlov and I. V. Dolbin, Glass Phys. Chem. 45, 277 (2019).

    Article  Google Scholar 

  9. L. H. Shao, R. Y. Luo, S. L. Bai, and J. Wang, Compos. Struct. 87, 274 (2009).

    Article  Google Scholar 

  10. G. V. Kozlov, Yu. G. Yanovskii, Z. M. Zhirikova, V. Z. Aloev, and Yu. N. Karnet, Mekh. Kompoz. Mater. Konstrukts. 18, 131 (2012).

    Google Scholar 

  11. A. K. Mikitaev, G. V. Kozlov, and G. E. Zaikov, Polymer Nanocomposites: Variety of Structural Forms and Applications (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  12. A. Coniglio and H. E. Stanley, Phys. Rev. Lett. 52, 1068 (1984).

    Article  ADS  Google Scholar 

  13. A. K. Mikitaev and G. V. Kozlov, Dokl. Phys. 60, 203 (2015).

    Article  ADS  Google Scholar 

  14. D. W. Schaefer, J. Zhao, H. Dowty, M. Alexander, and E. B. Orler, Soft Matter 4, 2071 (2008).

    Article  ADS  Google Scholar 

  15. X. Wang, Z. Z. Yong, Q. W. Li, P. D. Bradford, W. Liu, D. S. Tucker, W. Cai, H. Wang, F. G. Yuan, and Y. T. Zhu, Mater. Res. Lett. 1, 19 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Dolbin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, G.V., Dolbin, I.V. The Description of the Degree of Reinforcement of Polymer/Carbon Nanotubes Nanocomposites: the “Termite” Limit. Phys. Solid State 63, 1442–1445 (2021). https://doi.org/10.1134/S1063783421090225

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421090225

Keywords:

Navigation