Skip to main content
Log in

Structure and Mechanisms of Formation of Nanosized Films of Impurity Metal of Cobalt and Nickel in Single Crystals of LiF and MgF2

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Thermal etching of LiF and MgF2 crystals with impurities of cobalt and nickel are studied using raster electron microscopy and atomic force microscopy with decoration. It is shown that impurity inclusions come out of the crystal on its surface from dislocations. There are differences between thermal etching in vacuum and in atmosphere of air. Crystallographically oriented terraced etch pits are formed after the egress of impurities from dislocations. Rectangular pits of thermal etching are formed after crystal annealing at 750°C in air. During thermal etching, a surface metal-containing nanosized film is formed. Oxidation of surface impurities is observed during thermal etching in an atmosphere of air or in atmosphere of residual air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Dauletbekova, J. Maniks, I. Manika, R. Zabels, A. T. Akilbekov, M. V. Zdorovets, Y. Bikhert, and K. Schwartz, Nucl. Instrum. Methods Phys. Res., Sect. B 286, 56 (2012).

    Google Scholar 

  2. S. A. Nebogin, N. A. Ivanov, L. I. Bryukvina, N. V. Shipitsin, A. E. Rzhechitskii, and V. L. Paperny, Photon. Nanostruct.: Fundam. Appl. 29, 36 (2018).

    Article  ADS  Google Scholar 

  3. V. I. Dubinko, D. I. Vainshtein, and H. W. den Hartog, Nucl. Instrum. Methods Phys. Res., Sect. B 228, 304 (2005).

    Google Scholar 

  4. L. Bryukvina, N. Ivanov, and S. Nebogin, J. Phys. Chem. Solids 120, 133 (2018).

    Article  ADS  Google Scholar 

  5. N. A. Ivanov, D. V. Inshakov, E. A. Oleinikov, V. M. Khulugurov, and A. I. Chernyshov, Zh. Prikl. Spektrosk. 54, 331 (1991).

    Google Scholar 

  6. L. I. Bryukvina, Phys. Solid State 61, 1808 (2019).

    Article  ADS  Google Scholar 

  7. A. A. Shalaev, N. S. Bobina, A. S. Paklin, R. Yu. Shendrik, and A. I. Nepomnyashchikh, Bull. Russ. Acad. Sci.: Phys. 79, 263 (2015).

    Article  Google Scholar 

  8. S. A. Nebogin, L. I. Bryukvina, N. A. Ivanov, and M. D. Zimin, Russ. J. Phys. Chem. B 12, 200 (2018).

    Article  Google Scholar 

  9. D. M. Rines, P. F. Moulton, D. Welford, and G. A. Rines, Opt. Lett. 19, 628 (1994).

    Article  ADS  Google Scholar 

  10. L. Bryukvina, J. Lumin. 162, 145 (2015).

    Article  Google Scholar 

  11. H. Rao, Zh. Cong, S. Zhang, Y. Liu, Sh. Men, Zh. Liu, Xingyu Zhang, P. G. Zverev, V. A. Konyushkin, H. Yang, W. Cheng, and Y. Li, Opt. Express 23, 21884 (2015).

    Article  ADS  Google Scholar 

  12. H. A. Ivanov, D. V. Inshakov, I. A. Parfianovich, and V. M. Khulugurov, Sov. Tech. Phys. Lett. 12, 517 (1986).

    Google Scholar 

  13. L. I. Bryukvina and N. A. Ivanov, J. Fluorine Chem. A 192, 124 (2016).

    Article  Google Scholar 

  14. A. Lushchik, I. Kudryavtseva, P. Liblik, Ch. Lushchik, A. I. Nepomnyashchikh, K. Schwartz, and E. Vasil’chenko, Rad. Meas. 43, 157 (2008).

    Article  Google Scholar 

  15. S. A. Nebogin, L. I. Bryukvina, N. A. Ivanov, and D. S. Glazunov, Phys. Solid State 59, 1139 (2017).

    Article  ADS  Google Scholar 

  16. S. Bauk, Sh. Alam, and A. Saleem Alzoubi, J. Phys. Sci. 22, 125 (2011).

    Google Scholar 

  17. L. Bryukvina, Open Acc. J. Chem. 4, 01 (2020).

  18. D. V. Martyshkin, J. G. Parker, V. V. Fedorov, and S. B. Mirov, Appl. Phys. Lett. 84, 3022 (2004).

    Article  ADS  Google Scholar 

  19. V. M. Khulugurov, V. N. Salomatov, A. Vassilikou-Dova, V. I. Baryshnikov, I. M. Kalogeras, S. Grigorakakis, S. K. Makarov, and A. A. Mikhalenko, J. Phys.: Condens. Matter 11, 7005 (1999).

    ADS  Google Scholar 

  20. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications, Part of NATO Science for Peace and Security Series B: Physics and Biophysics (Springer, Dordrecht, 2008), p. 225.

  21. Yingying Zhang, Tingting Tan, Zhengtang Liu, Sha Liu, and Jie Su, Vacuum A 120, 50 (2015).

    Article  ADS  Google Scholar 

  22. T. Ejima, W. H. Robinson, and J. P. Hirth, J. Cryst. Growth 7, 155 (1970).

    Article  ADS  Google Scholar 

  23. A. R. Patel and S. K. Arora, J. Phys. D 7, 2301 (1974).

    Article  ADS  Google Scholar 

  24. K. Sangwal, Etching of Crystals: Theory, Experiment and Application (North-Holland, Amsterdam, 2012).

    Google Scholar 

  25. N. A. Ivanov, D. V. Inshakov, E. A. Oleinikov, E. E. Penzina, and V. M. Khulugurov, Opt. Spectrosc. 71, 273 (1991).

    ADS  Google Scholar 

  26. L. I. Bryukvina, E. A. Ermolaeva, S. N. Pidgurskii, L. F. Suvorova, and V. M. Khulugurov, Phys. Solid State 48, 68 (2006).

    Article  ADS  Google Scholar 

  27. S. Amelinckx, Acta Met. 2, 848 (1954).

    Article  Google Scholar 

  28. M. Yoshimatsu and K. Kohra, J. Phys. Soc. Jpn. 15, 1760 (1960).

    Article  ADS  Google Scholar 

  29. M. Yoshimatsu, J. Phys. Soc. Jpn. 16, 2246 (1961).

    Article  ADS  Google Scholar 

  30. C. C. Desai, K. Sangwal, and V. John, Krist. Tech. 12, 1269 (1977).

    Article  Google Scholar 

  31. M. B. Ives and J. P. Hirth, J. Chem. Phys. 33, 517 (1960).

    Article  ADS  Google Scholar 

  32. A. Grinberg, Phys. Status Solids 8, 1369 (1963).

    Article  ADS  Google Scholar 

  33. J. Budke, J. Appl. Phys. 40, 641 (1969).

    Article  ADS  Google Scholar 

  34. J. J. Gilman, W. G. Johnston, and G. W. Sears, J. Appl. Phys. 29, 747 (1958).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by project II.10.1.2 of program II.10.1. of fundamental research of Siberian Branch of Russian Academy of Sciences for 2017–2020, and Research and Development Work no. 1210331000066-3 of Ministry of Education and Science of Russia “Precision luminescent methods in laser physics and nanophotonics.”

The measurements were carried out using the equipment of Center for Collective Use “Baikal Nanotechnology Center.” The work was carried out within the framework of the REC “Baikal.”

This work was supported by Ministry of Science and Higher Education of the Russian Federation in the framework of the scientific and educational center “Baikal” (grant no. FZZS-2021-0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Ivanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, N.A., Nebogin, S.A., Kolesnikov, S.S. et al. Structure and Mechanisms of Formation of Nanosized Films of Impurity Metal of Cobalt and Nickel in Single Crystals of LiF and MgF2. Phys. Solid State 63, 1387–1396 (2021). https://doi.org/10.1134/S1063783421090134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421090134

Keywords:

Navigation