Skip to main content
Log in

Investigation of the Photophysical Properties of the HgI2@mSiO2 Nanocomposite

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The luminescence properties of a composite consisting of mesoporous silica and mercury diiodide nanoparticles formed in silica nanopores have been investigated. The formation of nanoparticles was carried out by evaporation of the HgI2 solution introduced into the SiO2 nanopores. It was found that the photoluminescence of the HgI2@mSiO2 composite is due to the glow of mercury diiodide, while the emission spectrum is significantly shifted towards shorter wavelengths with respect to the emission spectrum of bulk HgI2 crystals. The shift of the HgI2 emission spectrum to the short-wavelength side is explained by quantum-size effects in the electronic spectrum of HgI2 nanoparticles being part of composite, and the significant width of the spectrum is explained by its inhomogeneous broadening due to the dependence of the band gap of nanodots on their size d. The shape of the size distribution function of HgI2 nanodots was estimated and it was shown that it is characterized by a rather narrow maximum at dM = 2.2 nm, which is ~2/3 of the nanopore diameter in the SiO2 matrix (~3 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. Lu and J. H. Warner, ACS Appl. Electron. Mater. 2, 1777 (2020).

    Article  Google Scholar 

  2. Electrons and Phonons in Layered Crystal Structures, Ed. by T. J. Wieting and M. Schlüter (D. Reidel, Dordrecht, Holland, 1979), Vol. 3.

    Google Scholar 

  3. M. Sharon, Graphene: An Introduction to the Fundamentals and Industrial Applications (Wiley, Scrivener, 2015).

  4. R. Ganatra and Q. Zhang, ACS Nano 8, 4074 (2014).

    Article  Google Scholar 

  5. K.-C. Chiu, X.-Q. Zhang, X. Liu, V. M. Menon, Y.‑F. Chen, J.-M. Wu, and Y.-H. Lee, IEEE J. Quantum Electron. 51, 1 (2015).

    Article  Google Scholar 

  6. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).

    Article  ADS  Google Scholar 

  7. G. W. Mudd, S. A. Svatek, T. Ren, A. Patané, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev, Adv. Mater. 25, 5714 (2013).

    Article  Google Scholar 

  8. T. Mueller and E. Malic, npj 2D Mater. Appl. 2, 29 (2018).

    Google Scholar 

  9. Photoelectrochemistry and Photovoltaics of Layered Semiconductors, Ed. by A. Aruchamy (Kluwer Academic, Dordrecht, the Netherlands, 1992).

  10. I. Kh. Akopyan, O. N. Volkova, B. V. Novikov, and B. I. Venzel’, Phys. Solid State 39, 407 (1997).

    Article  ADS  Google Scholar 

  11. J. F. Condeles, R. S. Silva, A. C. Silva, and N. O. Dantas, J. Appl. Phys. 116, 064303 (2014).

    Article  ADS  Google Scholar 

  12. D. Gopalakrishnan, D. Damien, B. Li, H. Gullappalli, V. K. Pillai, P. M. Ajayan, and M. M. Shaijumon, Chem. Commun. 51, 6293 (2015).

    Article  Google Scholar 

  13. X. Wang, Q. Wu, K. Jiang, C. Wang, and C. Zhang, Sens. Actuators, B 252, 183 (2017).

    Article  Google Scholar 

  14. Semiconductors for Room Temperature Nuclear Detector Applications, Vol. 43 of Semiconductors and Semimetals, Ed. by T. E. Schlesinger and R. B. James (Elsevier, Amsterdam, 1995).

    Google Scholar 

  15. G. Xu, J. Y. Li, R. H. Nan, W. L. Zhou, Z. Gu, L. Zhang, X. M. Ma, and X. P. Cao, J. Opt. Adv. Mater. 18, 842 (2016).

    Google Scholar 

  16. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016).

    Article  ADS  Google Scholar 

  17. B. V. Novikov and M. M. Pimonenko, Sov. Phys. Semicond. 4, 1785 (1970).

    Google Scholar 

  18. A. Burger and D. Nason, J. Appl. Phys. 71, 2717 (1992).

    Article  ADS  Google Scholar 

  19. C. C. Chester and J. Coleman, Phys. Chem. Solids 32, 223 (1971).

    Article  ADS  Google Scholar 

  20. J. Takeda, T. Goto, and M. Matsuoka, J. Phys. Soc. Jpn. 57, 3248 (1988).

    Article  ADS  Google Scholar 

  21. Y. Kayanuma, Phys. Rev. B 38, 9797 (1988).

    Article  ADS  Google Scholar 

  22. P. D. Bloch, J. W. Hodby, C. Schwab, and D. W. Stacey, J. Phys. C 11, 2579 (1978).

    Article  ADS  Google Scholar 

  23. Y.-C. Chang and R. B. James, Phys. Rev. B 46, 15040 (1992).

    Article  ADS  Google Scholar 

  24. M. R. Rao, D. Roayn, and J. K. D. Verma, J. Phys. D 18, 517 (1985).

    Article  ADS  Google Scholar 

  25. R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, and Q. Li, Angew. Chem. Int. Ed. 48, 4598 (2009).

    Article  Google Scholar 

  26. C. M. Donega and R. Koole, J. Phys. Chem. C 113, 6511 (2009).

    Article  Google Scholar 

  27. A. F. van Driel, G. Allan, C. Delerue, P. Lodahl, W. L. Vos, and D. Vanmaekelbergh, Phys. Rev. Lett. 95, 236804 (2005).

    Article  ADS  Google Scholar 

  28. G. P. Murphy, X. Zhang, and A. L. Bradley, J. Phys. Chem. C 120, 26490 (2016).

    Article  Google Scholar 

  29. M. Sieskind, J. Phys. 39, 899 (1978).

    Article  Google Scholar 

  30. X. Akopyan, B. V. Bondarenko, B. A. Kazennov, and B. V. Novikov, Sov. Phys. Solid State 29, 238 (1987).

    Google Scholar 

  31. V. M. Zaletin, I. N. Nozhkina, V. I. Fomin, N. V. Shustov, and N. I. Protasov, Sov. At. Energy 48, 191 (1980).

    Article  Google Scholar 

  32. D. A. Kurdyukov, D. A. Eurov, M. K. Rabchinskii, A. V. Shvidchenko, M. V. Baidakova, D. A. Kirilenko, S. V. Koniakhin, V. V. Shnitov, V. V. Sokolov, P. N. Brunkov, A. T. Dideikin, Y. M. Sgibnev, L. Y. Mironov, D. A. Smirnov, A. Y. Vul’, and V. G. Golubev, Nanoscale 10, 13223 (2018).

    Article  Google Scholar 

  33. S. I. Pokutnii, Semiconductors 41, 1323 (2007).

    Article  ADS  Google Scholar 

  34. N. Nishiguchi and K. Yoh, Jpn. J. Appl. Phys. 36, 3928 (1997).

    Article  ADS  Google Scholar 

  35. Z. K. Tang, Y. Nozue, and T. Goto, J. Phys. Soc. Jpn. 61, 2943 (1992).

    Article  ADS  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research (project no. 20-03-00656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Starukhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starukhin, A.N., Nelson, D.K., Kurdyukov, D.A. et al. Investigation of the Photophysical Properties of the HgI2@mSiO2 Nanocomposite. Phys. Solid State 63, 1311–1316 (2021). https://doi.org/10.1134/S106378342108028X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342108028X

Keywords:

Navigation