Skip to main content
Log in

Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The fundamental understanding of the localization of H atoms in steel is an important step to describe theoretically the mechanisms of hydrogen embrittlement at the atomic level. The influence of various substitutional impurities (Mg, Al, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Pd, and Cd) on the energy of hydrogen dissolution in the bcc iron lattice is studied via ab initio calculations within the density functional theory (DFT). The electronic and elastic contributions of various impurities to the dissolution energy are found, and their influence on the bond energy of hydrogen and impurities is analyzed. There is a linear relationship between the energy of hydrogen dissolution and the magnitude of change in electron density inside a tetrahedral pore after the introduction of a hydrogen atom into it. The results obtained made it possible to formulate the key mechanisms of controlling the localization of hydrogen in the bcc iron by substitutional dopants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. P. Hirth, Met. Trans. A 11, 861 (1980).

    Article  Google Scholar 

  2. A. R. Troiano, Trans. ASM 52, 54 (1960).

    Google Scholar 

  3. H. Vehoff, in Hydrogen in Metals III: Properties and Applications, Ed. by H. Wipf (Springer, Berlin, 1997).

    Google Scholar 

  4. Y. Fukai, The Metal-Hydrogen System: Basic Bulk Properties (Springer, Berlin, 2005).

    Book  Google Scholar 

  5. H. K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).

    Article  Google Scholar 

  6. S. P. Lynch, Met. Trans. 3, 189 (1979).

    Google Scholar 

  7. I. M. Bernstein and A. W. Thompson, in Hydrogen Embrittlement and Stress Corrosion Cracking, Ed. by R. Gibala and R. F. Hehemann (Am. Soc. Met., Metal Park, OH, 1984).

    Google Scholar 

  8. W. Gerberich, in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Ed. by R. P. Gangloff and B. P. Somerday (Woodhead, Cambridge, 2012).

    Google Scholar 

  9. N. Nanninga, A. Slifka, Y. Levy, and C. White, J. Res. Nat. Inst. Standards Technol. 115, 437 (2010).

    Article  Google Scholar 

  10. S. M. Myers, M. I. Baskes, H. K. Birnbaum, J. W. Corbett, G. G. de Leo, S. K. Estreicher, E. E. Haller, P. Jena, N. M. Johnson, R. Kirchheim, S. J. Pearton, and M. J. Stavola, Rev. Mod. Phys. 64, 559 (1992).

    Article  ADS  Google Scholar 

  11. D. A. Mirzaev, A. A. Mirzoev, K. Yu. Okishev, and M. S. Rakitin, Mol. Phys. 110, 1299 (2012).

    Article  ADS  Google Scholar 

  12. D. A. Mirzaev, A. A. Mirzoev, and M. S. Rakitin, Vestn. YuUrGU, Ser. Metall. 16 (4), 40 (2016).

    Google Scholar 

  13. W. A. Counts, C. Wolverton, and R. Gibala, Acta Mater. 58, 4730 (2010).

    Article  ADS  Google Scholar 

  14. D. Psiachos, T. Hammerschmidt, and R. Drautz, Acta Mater. 59, 4255 (2011).

    Article  ADS  Google Scholar 

  15. J. K. Norskov and F. Besenbacher, J. Less-Common. Met. 130, 475 (1987).

    Article  Google Scholar 

  16. P. Jena, R. M. Nieminen, M. J. Puska, and M. Manninen, Phys. Rev. B 3, 7612 (1985).

    Article  ADS  Google Scholar 

  17. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  18. J. Hafner, J. Comput. Chem. 29, 2044 (2008).

    Article  Google Scholar 

  19. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 7, 3865 (1996).

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project 20-43-740004 r_a_Chelyabinsk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mirzoev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakitin, M.S., Mirzoev, A.A. Ab initio Simulation of Dissolution Energy and Bond Energy of Hydrogen with 3sp, 3d, and 4d Impurities in bcc Iron. Phys. Solid State 63, 1065–1068 (2021). https://doi.org/10.1134/S1063783421070180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070180

Keywords:

Navigation