Skip to main content
Log in

On the Critical Melting Point of a Simple Matter

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The problem of appearance and disappearance of the S-loop of the first-order phase transition (PT) in an isotherm of the equation of state near the crystal–liquid (CL) PT was studied using the three-phase model of a simple matter. The calculations carrier out for argon is shown that the S-loop of CL PT in an isotherm of the equation of state appears because of a sharp decrease and subsequent increase in the pressure related to the formation of delocalized atoms as the specific volume increases isothermally. As temperature increases, the pressure in an isotherm related to the delocalization of atoms transits from the negative region (where it compresses the system) to the positive region (where is stretches the system). Such a behavior of this function leads to the formation of the S-loop of CL PT in an isotherm of the equation of state and also to the disappearance of the S-loop of CL PT at high temperatures with the formation of the critical point of CL PT. The change in the parameters of the CL PT critical point is studied as the number of atoms in the nanosystem decreases. It was shown the critical temperature and pressure decrease in going to a nanosystem, and the critical molar volume increases. The calculations in terms of the three-phase model of a simple matter show that the structure in the CL PT critical point is close to the amorphous packing. The parameters of this amorphous structure in the CL PT critical point are changed slightly as the number of atoms in the nanosystem decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. R. Ubbelohde, Melting and Crystal Structure (Clarendon, Oxford, 1965).

    Google Scholar 

  2. J. Bilgram, Phys. Rep. 153, 1 (1987). https://doi.org/10.1016/0370-1573(87)90047-0

  3. L. D. Landau, Phys. Z. Sowjetunion 11, 26 (1937).

  4. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon, Oxford, 1980; Nauka, Moscow, 1976).

  5. J. Frenkel, Kinetic Theory of Liquids (Oxford Univ., London, 1946; Nauka, Leningrad, 1975).

  6. S. M. Stishov, Sov. Phys. Usp. 17, 625 (1975). https://doi.org/10.1070/PU1975v017n05ABEH004361

    Article  ADS  Google Scholar 

  7. L. B. Robinson, V. S. T. Au-Yeung, and H. A. Yassen, Phys. Rev. B 21, 2352 (1980). https://doi.org/10.1103/PhysRevB.21.2352

    Article  ADS  Google Scholar 

  8. Yu. L. Klimontovich, Statistical Physics (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  9. A. Aitta, J. Stat. Mech.: Theory Exp. 2006, P12015 (2006). https://doi.org/10.1088/1742-5468/2006/12/P12015

  10. J. Kierfeld and V. Vinokur, Phys. Rev. B 61, R14928 (2000). https://doi.org/10.1103/physrevb.61.r14928

    Article  ADS  Google Scholar 

  11. V. V. Prut, Tech. Phys. 53, 668 (2008). https://doi.org/10.1134/S1063784208050241

    Article  Google Scholar 

  12. M. Elenius and M. Dzugutov, J. Chem. Phys. 131, 104502 (2009). https://doi.org/10.1063/1.3213616

    Article  ADS  Google Scholar 

  13. M. N. Magomedov, Vestn. MGTU im. Baumana, Ser. Estestv. Nauki No. 2, 28 (2013) [in Russian].

    Google Scholar 

  14. K. Mochizuki and K. Koga, Phys. Chem. Chem. Phys. 17, 18437 (2015). https://doi.org/10.1039/c5cp02568k

    Article  Google Scholar 

  15. D. A. Kirzhnits, Sov. Phys. Usp. 14, 512 (1972). https://doi.org/10.1070/PU1972v014n04ABEH004734

    Article  ADS  Google Scholar 

  16. S. M. Sharma and S. K. Sikka, Prog. Mater. Sci. 40, 1 (1996). https://doi.org/10.1016/0079-6425(95)00006-2

  17. G. Shen and H. K. Mao, Rep. Prog. Phys. 80, 016101 (2016). https://doi.org/10.1088/1361-6633/80/1/016101

    Article  ADS  Google Scholar 

  18. S. A. Kukushkin and A. V. Osipov, Inorg. Mater. 35, 551 (1999).

    Google Scholar 

  19. M. N. Magomedov, J. Mol. Liq. 285, 106 (2019). https://doi.org/10.1016/j.molliq.2019.04.032

    Article  Google Scholar 

  20. M. N. Magomedov, Semiconductors 42, 1133 (2008). https://doi.org/10.1134/S1063782608100011

    Article  ADS  Google Scholar 

  21. M. N. Magomedov, Phys. Met. Metallogr. 114, 207 (2013). https://doi.org/10.1134/S0031918X13030113

    Article  ADS  Google Scholar 

  22. M. N. Magomedov, Semiconductors 44, 271 (2010). https://doi.org/10.1134/S1063782610030012

    Article  ADS  Google Scholar 

  23. J. O. Hirschfelder, Ch. F. Curtiss, and B. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    MATH  Google Scholar 

  24. M. N. Magomedov, Phys. Solid State 45, 32 (2003). https://doi.org/10.1134/1.1537405

    Article  ADS  Google Scholar 

  25. L. A. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973).

    Google Scholar 

  26. S. M. Stishov, Sov. Phys. Usp. 31, 52 (1988). https://doi.org/10.1070/PU1988v031n01ABEH002535

    Article  ADS  Google Scholar 

  27. M. N. Magomedov, High Temp. 44, 513 (2006). https://doi.org/10.1007/s10740-006-0064-5

    Article  Google Scholar 

  28. N. H. March and N. P. Tosi, Introduction to Liquid State Physics (World Scientific, London, 2002).

    Book  Google Scholar 

  29. G. J. Mikolaj and C. J. Pings, J. Chem. Phys. 46, 1401 (1967). https://doi.org/10.1063/1.1840864

    Article  ADS  Google Scholar 

  30. M. Hanifpour, N. Francois, V. Robins, A. Kingston, S. V. Allaei, and M. Saadatfar, Phys. Rev. E 91, 062202 (2015). https://doi.org/10.1103/PhysRevE.91.062202

    Article  ADS  Google Scholar 

  31. M. N. Magomedov, J. Non-Cryst. Solids 546, 120263 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120263

    Article  Google Scholar 

  32. M. N. Magomedov, Crystallogr. Rep. 62, 480 (2017). https://doi.org/10.1134/S1063774517030142

    Article  ADS  Google Scholar 

  33. G. J. Zarragoicoechea and V. A. Kuz, Phys. Rev. E 65, 021110 (2002). https://doi.org/10.1103/PhysRevE.65.021110

    Article  ADS  Google Scholar 

  34. A. W. Islam, T. W. Patzek, and A. Y. Sun, J. Nat. Gas Sci. Eng. 25, 134 (2015). https://doi.org/10.1016/j.jngse.2015.04.035

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to S.P. Kramynin, N.Sh. Gazanova, Z.M. Surkhaeva, and M.M. Gadzhieva for useful discussion and the assistance in the work.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-11013_mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Magomedov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, M.N. On the Critical Melting Point of a Simple Matter. Phys. Solid State 63, 1048–1057 (2021). https://doi.org/10.1134/S1063783421070167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070167

Keywords:

Navigation