Skip to main content
Log in

The Modeling of the Kapitza Conductance through Rough Interfaces between Solid Bodies

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The task of determining the Kapitza conductance through an interface between two solid bodies considering the roughness of the interface is formulated and solved for the first time. A modified acoustic mismatch model (AMM) is used. The difference from the standard model consists in the fact that the disperse properties of acoustic waves are taken into account. A substantial advantage of this model is the fact that its predictions are in agreement with the data in a wide range of temperatures from 30 to over 300 K. Eventually, it is very important that a method considering the statistical distribution of the roughness profiles is used for the determination of the energy transfer coefficient through the interface for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, Appl. Phys. Rev. 1, 011305 (2014). https://doi.org/10.1063/1.4832615

    Article  ADS  Google Scholar 

  2. E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989). https://doi.org/10.1103/RevModPhys.61.605

    Article  ADS  Google Scholar 

  3. M. Blank and L. Weber, J. Appl. Phys. 124, 105304 (2018). https://doi.org/10.1063/1.5030049

    Article  ADS  Google Scholar 

  4. D. H. Olson, K. M. Freedy, S. J. McDonnell, and P. E. Hopkins, Appl. Phys. Lett. 112 (2018). https://doi.org/10.1063/1.5022371

  5. J. C. Duda and P. E. Hopkins, Appl. Phys. Lett. 100, 111602 (2012). https://doi.org/10.1063/1.3695058

    Article  ADS  Google Scholar 

  6. P. E. Hopkins, ISRN Mech. Eng. 2013, 1 (2013). https://doi.org/10.1155/2013/682586

  7. M. Blank, G. Schneider, J. Ordonez-Miranda, and L. Weber, J. Appl. Phys. 126, 165302 (2019). https://doi.org/10.1063/1.5115823

    Article  ADS  Google Scholar 

  8. J. Wang, Z. Zhang, R. Shi, B. N. Chandrashekar, N. Shen, H. Song, N. Wang, J. Chen, and C. Cheng, Adv. Mater. Interface 7, 1901582 (2020). https://doi.org/10.1002/admi.201901582

    Article  Google Scholar 

  9. J. Zhao, R. Zhao, Y. Huo, and W. Cheng, Int. J. Heat Mass Transfer 140, 705 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.045

    Article  Google Scholar 

  10. N. K. Ravichandran, H. Zhang, and A. J. Minnich, Phys. Rev. X 8, 041004 (2018). https://doi.org/10.1103/PhysRevX.8.041004

    Article  Google Scholar 

  11. K. Termentzidis, J. Parasuraman, C. A. da Cruz, S. Merabia, D. Angelescu, F. Marty, T. Bourouina, X. Kleber, P. Chantrenne, and P. Basset, Nanoscale Res. Lett. 6, 288 (2011). https://doi.org/10.1186/1556-276X-6-288

    Article  ADS  Google Scholar 

  12. K. Termentzidis, S. Merabia, P. Chantrenne, and P. Keblinski, Int. J. Heat Mass Transfer 54, 2014 (2011).https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.001

    Article  Google Scholar 

  13. S. Merabia and K. Termentzidis, Phys. Rev. B 89, 054309 (2014). https://doi.org/10.1103/PhysRevB.89.054309

    Article  ADS  Google Scholar 

  14. Z. Tian, K. Esfarjani, and G. Chen, Phys. Rev. B 86, 235304 (2012). https://doi.org/10.1103/PhysRevB.86.235304

    Article  ADS  Google Scholar 

  15. B. Liu and V. I. Khvesyuk, Int. J. Heat Mass Transfer 159, 120117 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120117

    Article  Google Scholar 

  16. A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, Phys. Rev. Lett. 107, 095901 (2011). https://doi.org/10.1103/PhysRevLett.107.095901

    Article  ADS  Google Scholar 

  17. J. A. Ogilvy, Rep. Prog. Phys. 50, 1553 (1987). https://doi.org/10.1088/0034-4885/50/12/001

    Article  MathSciNet  ADS  Google Scholar 

  18. F. G. Bass and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, Vol. 93 of International Series in Natural Philosophy (Elsevier, Amsterdam, 2013).

  19. J. Lim, K. Hippalgaonkar, S. C. Andrews, A. Majumdar, and P. Yang, Nano Lett. 12, 2475 (2012). https://doi.org/10.1021/nl3005868

    Article  ADS  Google Scholar 

  20. J. Achenbach, Wave Propagation in Elastic Solids, Vol. 16 of North-Holland Series in Applied Mathematics and Mechanics (Elsevier, Amsterdam, 2012).

  21. V. I. Khvesyuk, B. Liu, and A. A. Barinov, Tech. Phys. Lett. 46, 983 (2020). https://doi.org/10.1134/S1063785020100065

    Article  ADS  Google Scholar 

  22. P. E. Hopkins, J. C. Duda, C. W. Petz, and J. A. Floro, Phys. Rev. B 84, 035438 (2011). https://doi.org/10.1103/PhysRevB.84.035438

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Khvesyuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, B., Khvesyuk, V.I. & Barinov, A.A. The Modeling of the Kapitza Conductance through Rough Interfaces between Solid Bodies. Phys. Solid State 63, 1042–1047 (2021). https://doi.org/10.1134/S1063783421070155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070155

Keywords:

Navigation