Skip to main content
Log in

Direct Magnetoelectric Effect in Bilayered Ceramic Composites Based on Mn0.4Zn0.6Fe2O4 Ferrimagnet and PbZr0.53Ti0.47O3 Ferroelectric

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Direct magnetoelectric effect has been studied for bilayered composites under different experimental conditions. The composites are obtained by co-sintering of powders of Mn0.4Zn0.6Fe2O4 ferrimagnet and PbZr0.53Ti0.47O3 ferroelectric and gluing of pre-sintered plates made of Mn0.4Zn0.6Fe2O4 and PbZr0.53Ti0.47O3 powders with an epoxy compound. It is found that the sintered samples have higher values of the magnetoelectric effect compared to the composites obtained by gluing the sintered plates. Revealed regularities qualitatively agree with the conclusions from the theoretical model of the effective parameters of a heterogeneous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y. Zhou, D. Maurya, Y. Yan, G. Srinivasan, E. Quandt, and S. Priya, Energy Harvest. Syst. 3, 1 (2015).

    Google Scholar 

  2. D. V. Chashin, K. E. Kamentsev, and Yu. K. Fetisov, J. Commun. Technol. Electron. 53, 1435 (2008).

    Article  Google Scholar 

  3. D. A. Burdin, Yu. K. Fetisov, D. V. Chashin, and N. A. Ekonomov, Tech. Phys. Lett. 38, 661 (2012).

    Article  ADS  Google Scholar 

  4. G. Srinivasan, C. P. De Vreugd, V. M. Laletin, N. Paddubnaya, M. I. Bichurin, V. M. Petrov, and D. A. Fillipov, Phys. Rev. B 71, 184423 (2005).

    Article  ADS  Google Scholar 

  5. A. A. Bush, K. E. Kamentsev, V. F. Meshcheryakov, Yu. K. Fetisov, D. V. Chashin, and L. Yu. Fetisov, Tech. Phys. 54, 1314 (2009).

    Article  Google Scholar 

  6. M. I. Bichurin, D. A. Filippov, V. M. Petrov, V. M. Laletsin, N. Paddubnaya, and G. Srinivasan, Phys. Rev. B 68, 132408 (2003).

    Article  ADS  Google Scholar 

  7. D. A. Filippov, M. I. Bichurin, V. M. Petrov, V. M. Laletin, and G. Srinivasan, Phys. Solid State 46, 1674 (2004).

    Article  ADS  Google Scholar 

  8. J. Ryu, S. Priya, A. V. Carazo, K. Uchino, and H.‑E. Kim, J. Am. Ceram. Soc. 84, 2905 (2001).

    Article  Google Scholar 

  9. P. Record, C. Popov, J. Fletcher, E. Abraham, Z. Huang, H. Chang, and R. W. Whatmore, Sens. Actuators, B 126, 344 (2007).

    Article  Google Scholar 

  10. D. V. Saveliev, Y. K. Fetisov, D. V. Chashin, L. Y. Fetisov, D. A. Burdin, and N. A. Ekonomov, J. Magn. Magn. Mater. 466, 219 (2018).

    Article  ADS  Google Scholar 

  11. L. Yu. Fetisov, Yu. K. Fetisov, N. S. Perov, and D. V. Chashin, Tech. Phys. 56, 485 (2011).

    Article  Google Scholar 

  12. S. D. Patil, K. Y. Rajpure, and A. M. Shaikh, J. Mater. Sci. Chem. Eng. 4, 1 (2016).

    Google Scholar 

  13. S. D. Patil, S. S. Patil, V. G. Deonikar, K. Y. Rajpure, and A. M. Shaikh, Funct. Mater. Lett. 10, 1650076 (2017).

    Article  Google Scholar 

  14. V. M. Laletin, D. A. Filippov, N. N. Poddubnaya, I. N. Manicheva, and G. Srinivasan, Tech. Phys. Lett. 45, 436 (2019).

    Article  ADS  Google Scholar 

  15. G. Sreenivasulu, L. Y. Fetisov, Y. K. Fetisov, and G. Srinivasan, Appl. Phys. Lett. 100, 052901 (2012).

    Article  ADS  Google Scholar 

  16. A. A. Timopheev, J. V. Vidal, A. L. Kholkin, and N. A. Sobolev, J. Appl. Phys. 114, 044102 (2013).

    Article  ADS  Google Scholar 

  17. P. Martins and S. Lanceros-Méndez, Adv. Funct. Mater. 23, 3371 (2013).

    Article  Google Scholar 

  18. J. Kuwata, K. Uchino, and S. Nomura, Jpn. J. Appl. Phys. 21, 1298 (1982).

    Article  ADS  Google Scholar 

  19. C. G. Zhong and Q. Jiang, J. Phys. D 41, 115002 (2008).

    Article  ADS  Google Scholar 

  20. S. K. Upadhyay, V. R. Reddy, A. Gupta, V. Sathe, R. J. Choudhary, V. Ganesan, and D. M. Phase, Mater. Res. Express 1, 026101 (2014).

    Article  ADS  Google Scholar 

  21. J. X. Zhang, J. Y. Dai, W. Lu, H. L. W. Chan, B. Wu, and D. X. Li, J. Phys. D 41, 235405 (2008).

    Article  ADS  Google Scholar 

  22. J.-g. Wan, Y. Weng, Y. Wu, Z. Li, J.-m. Liu, and G. Wang, Nanotechnology 18, 465708 (2007).

    Article  ADS  Google Scholar 

  23. D. A. Pan, Y. Bai, W. Y. Chu, and L. J. Qiao, J. Phys.: Condens. Matter 20, 025203 (2008).

    ADS  Google Scholar 

  24. D. A. Pan, Y. Bai, W. Y. Chu, and L. J. Qiao, J. Phys. D 41, 022002 (2008).

    Article  ADS  Google Scholar 

  25. S. A. Gridnev, Yu. E. Kalinin, A. V. Kalgin, and E. S. Grigor’ev, Phys. Solid State 57, 1372 (2015).

    Article  ADS  Google Scholar 

  26. J. Zhai, N. Cai, Z. Shi, Y. Lin, and C.-W. Nan, J. Appl. Phys. 95, 5685 (2004).

    Article  ADS  Google Scholar 

  27. J.-p. Zhou, H.-c. He, Z. Shi, G. Liu, and C.-W. Nan, J. Appl. Phys. 100, 094106 (2006).

    Article  ADS  Google Scholar 

  28. S. A. Gridnev and A. V. Kalgin, Phys. Status Solidi B 247, 1769 (2010).

    Article  ADS  Google Scholar 

  29. M. I. Bichurin, V. M. Petrov, and R. V. Petrov, J. Magn. Magn. Mater. 324, 3548 (2012).

    Article  ADS  Google Scholar 

  30. D. A. Filippov, V. M. Laletin, and T. A. Galichyan, Phys. Solid State 55, 1840 (2013).

    Article  ADS  Google Scholar 

  31. A. Biénkowski and R. Szewczyk, Materials 11, 1894 (2018).

    Article  ADS  Google Scholar 

  32. M. L. Kakhnyazh, Ya. L. Salakh, R. Yu. Szewczyk, A. V. Biénkowski, and I. V. Korobiichuk, Evr. Zh. Pered. Tekhnol. 6, 17 (2015).

    Google Scholar 

  33. S. A. Gridnev, Yu. E. Kalinin, A. V. Kalgin, and E. S. Grigor’ev, Vestn. Voronezh. Tekh. Univ. 8, 56 (2012).

    Google Scholar 

  34. S. A. Gridnev, M. V. Khakhlenkov, and L. Y. Fetisov, Ferroelectrics 561, 90 (2020).

    Article  Google Scholar 

  35. S. A. Gridnev, A. G. Gorshkov, E. S. Grigor’ev, and Yu. E. Kalinin, Bull. Russ. Acad. Sci.: Phys. 74, 1272 (2010).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Russian Science Foundation (project no. 17-72-20105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kalgin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalgin, A.V. Direct Magnetoelectric Effect in Bilayered Ceramic Composites Based on Mn0.4Zn0.6Fe2O4 Ferrimagnet and PbZr0.53Ti0.47O3 Ferroelectric. Phys. Solid State 63, 992–997 (2021). https://doi.org/10.1134/S1063783421070088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070088

Keywords:

Navigation