Skip to main content
Log in

Effect of Temperature of Long Annealing on the Structure and Magnetic Properties of Nanocrystalline FeSiNbCuB Alloy

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dependence of soft magnetic properties of the Fe73.5Si13.5Nb3Cu1B9 alloy on the 2-hour air annealing temperature Tan at temperatures from 520 to 620°C is studied. It is shown that the magnetic hysteresis loop is significantly broadens and becomes more inclined, and the Curie temperature of the amorphous matrix surrounding α-FeSi nanocrystals decreases with increasing Tan. The atomic structure and phase composition of alloy samples are studied by transmission X-ray diffraction. After annealing at temperatures to 580°C, nanocrystals contain mostly D03 phase (Fe3Si stoichiometry) and are ~7 nm in average size. Their relative fraction in the alloy increases with temperature due to additional iron diffusion from the matrix to nanocrystals. After annealings at Tan > 600°C, the average nanocrystal size increases, and iron boride crystal reflections appear in X-ray diffraction patterns. Degradation of soft magnetic properties of nanocrystalline Fe73.5Si13.5Nb3Cu1B9 alloy with annealing temperature from 520 to 580°C is explained by a decrease in the silicon concentration in FeSi nanocrystals, which results in an increase in the magnetocrystalline anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. U. Enz, in Handbook of Magnetic Materials, Ed. by E. P. Wohlfarth (North-Holland, Amsterdam, 1982), Vol. 3, p. 1. https://doi.org/10.1016/S1574-9304(05)80087-2

  2. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988). https://doi.org/10.1063/1.342149

    Article  ADS  Google Scholar 

  3. G. Herzer, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Vacuum-schmelze, Hanau, 1997), Vol. 10, p. 415. https://doi.org/10.1016/S1567-2719(97)10007-5

  4. F. Fiorillo, G. Bertotti, C. Appino, and M. Pasquale, in Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, Hoboken, 2016), p. 1. https://doi.org/10.1002/047134608x.w4504.pub2

    Book  Google Scholar 

  5. M. Müller, H. Harada, and H. Warlimont, in Springer Handbook of Materials Data, Ed. by H. Warlimont and W. Martienssen (Springer Int., New York, 2018), p. 753. https://doi.org/10.1007/978-3-319-69743-7

  6. F. Johnson, A. Hsaio, C. Ashe, D. Laughlin, D. Lambeth, and Mi. E. McHenry, in Proceedings of the 1st IEEE Conference on Nanotechnology IEEE-NANO 2001, Oct. 28–30, 2001, Maui, Hawaii (Inst. Electr. Electron. Eng., 2001), p. 1.

  7. M. A. Willard and M. Daniil, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 2013), Ch. 4, Vol. 21, p. 173. https://doi.org/10.1016/B978-0-444-59593-5.00004-0

    Book  Google Scholar 

  8. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990). https://doi.org/10.1109/20.104389

    Article  ADS  Google Scholar 

  9. R. S. Turtelli, V. H. Duong, R. Grössinger, M. Schwetz, E. Ferrara, and N. Pillmayr, IEEE Trans. Magn. 36, 508 (2000). https://doi.org/10.1109/20.825825

    Article  ADS  Google Scholar 

  10. M. LoBue, V. Basso, C. Beatrice, and P. Tiberto, IEEE Trans. Magn. 36, 3035 (2000). https://doi.org/10.1109/20.908669

    Article  ADS  Google Scholar 

  11. S. V. Komogortsev, G. S. Krainova, N. V. Il’in, V. S. Plotnikov, L. A. Chekanova, I. V. Nemtsev, G. Yu. Yurkin, R. S. Iskhakov, and D. A. Yatmanov, Inorg. Mater. Appl. Res. 11, 177 (2020). https://doi.org/10.1134/S2075113320010219

    Article  Google Scholar 

  12. F. Wan, A. He, J. Zhang, J. Song, A. Wang, C. Chang, and X. Wang, J. Electron. Mater. 45, 4913 (2016). https://doi.org/10.1007/s11664-016-4643-x

    Article  ADS  Google Scholar 

  13. T. Günes, J. Non-Cryst. Solids 513, 97 (2019).https://doi.org/10.1016/j.jnoncrysol.2019.03.024

    Article  ADS  Google Scholar 

  14. M. Xiao, Z. Zheng, L. Ji, X. Liu, Z. Qiu, and D. Zeng, J. Non-Cryst. Solids 521, 119546 (2019).

    Article  Google Scholar 

  15. H. A. Shivaee, A. Castellero, P. Rizzi, P. Tiberto, H. R. M. Hosseini, and M. Baricco, Met. Mater. Int. 19, 643 (2013). https://doi.org/10.1007/s12540-013-4003-9

    Article  Google Scholar 

  16. C. Smith, S. Katakam, S. Nag, Y. R. Zhang, J. Y. Law, R. V. Ramanujan, N. B. Dahotre, and R. Banerjee, Met. Mater. Trans. A 45, 2998 (2014).

    Article  Google Scholar 

  17. S. Atalay, P. T. Squire, I. Todd, H. A. Davies, and M. R. J. Gibbs, in Proceedings of the IEEE International Magnetics Conference INTERMAG-2000, Apr. 9–13, 2000, Toronto, Ontario, Canada, 2000, Abstract BD-03. https://doi.org/10.1109/INTMAG.2000.871900

  18. G. Manginas, G. Ababei, A. Damian, G. Stoian, M. Grigoras, M. Tibu, H. Chiriac, T. A. Ovari, and N. Lupu, in Proceedings of the IEEE International Magnetics Conference INTERMAG-2018, Apr. 23–27, 2018, Singapore, 2018, p. 1800BB12. https://doi.org/10.1109/INTMAG.2018.8508102

  19. V. H. Duong, R. S. Turtelli, and R. Grossinger, IEEE Trans. Magn. 32, 4821 (1996). https://doi.org/10.1109/20.539163

    Article  ADS  Google Scholar 

  20. Q. Zhu, Z. Chen, S. Zhang, Q. Li, Y. Jiang, P. Wu, and K. Zhang, J. Magn. Magn. Mater. 487, 165297 (2019).

    Article  Google Scholar 

  21. Y. Han, R. Wei, Z. Li, F. Li, and A. Wang, J. Mater. Sci.: Mater. Electron. 28, 10555 (2017). https://doi.org/10.1007/s10854-017-6829-2

    Article  Google Scholar 

  22. I. Todd, H. A. Davies, M. R. J. Gibbs, D. Kendall, and R. V. Major, Mater. Res. Soc. Symp. 577, 493 (1999). https://doi.org/10.1557/PROC-577-493

    Article  Google Scholar 

  23. H. S. Todd Liu, C. H. Yin, X. X. Miao, Z. D. Han, D. H. Wang, and Y. W. Du, Mater. Sci. Technol. 24, 45 (2008).

    Article  Google Scholar 

  24. P. Li, Z. X. Zheng, H. L. Su, and Y. C. Wu, Mater. Sci. Technol. 29, 1324 (2013). https://doi.org/10.1179/1743284713Y.0000000276

    Article  Google Scholar 

  25. H. Q. Guo, H. Kronmüller, T. Dragon, Z. H. Cheng, and B. G. Shen, Phys. Rev. B 62, 5760 (2000). https://doi.org/10.1103/PhysRevB.62.5760

    Article  ADS  Google Scholar 

  26. S. Kwon, S. Kim, and H. Yim, Curr. Appl. Phys. 20, 37 (2020). https://doi.org/10.1016/j.cap.2019.10.003

    Article  ADS  Google Scholar 

  27. L. Ling, Y. Biao, G. Leding, Y. Sha, and C. Zhi-hui, in Proceedings of the 2nd IEEE International Nanoelectronics Conference INEC 2008 (2008), p. 458.

  28. O. Geoffroy, N. Boust, H. Chazal, S. Flury, and J. Roudet, AIP Adv. 8, 047712 (2018). https://doi.org/10.1063/1.4993706

    Article  ADS  Google Scholar 

  29. R. Shi, Z. Wang, and Y. Han, AIP Adv. 9, 055222 (2019). https://doi.org/10.1063/1.5090554

    Article  ADS  Google Scholar 

  30. Y. Yoshizawa and K. Yamauchi, IEEE Transl. J. Magn. Jpn. 5, 1070 (1990). https://doi.org/10.1109/TJMJ.1990.4564397

    Article  Google Scholar 

  31. S. Kwon, S. Kim, H. Yim, K. H. Kang, and C. S. Yoon, J. Alloys Compd. 826, 154136 (2020). https://doi.org/10.1016/j.jallcom.2020.154136

    Article  Google Scholar 

  32. X. Y. Zhang, F. X. Zhang, J. W. Zhang, W. Yu, M. Zhang, J. H. Zhao, R. P. Liu, Y. F. Xu, and W. K. Wang, J. Appl. Phys. 84, 1918 (1998). https://doi.org/10.1063/1.368319

    Article  ADS  Google Scholar 

  33. A. A. Glazer, N. M. Kleinerman, V. A. Lukshina, A. P. Potapov, and V. V. Serikov, Fiz. Met. Metalloved. 12, 56 (1991).

    Google Scholar 

  34. G. Herzer, IEEE Trans. Magn. 30, 4800 (1994). https://doi.org/10.1557/jmr.2016.324

    Article  ADS  Google Scholar 

  35. V. V. Serikov N. M. Kleinerman, E. G. Volkova, V. A. Lukshina, A. P. Potapov, and A. V. Svalov, Phys. Met. Metallogr. 102, 268 (2006).

    Article  ADS  Google Scholar 

  36. G. Herzer, V. Budinsky, and C. Polak, Phys. Status Solidi B 248, 2382 (2011). https://doi.org/10.1002/pssb.201147088

    Article  ADS  Google Scholar 

  37. X. Fan, X. He, R. Nutor, R. Pan, J. Zheng, H. Ye, F. Wu, J. Jiang, and Y. Fang, J. Magn. Magn. Mater. 469, 349 (2019). https://doi.org/10.1016/j.JMMM.2018.08.078

    Article  ADS  Google Scholar 

  38. Z. Xue, X. Li, S. Sohrabi, Y. Ren, and W. Wang, Metals 10, 122 (2020). https://doi.org/10.3390/met10010122

    Article  Google Scholar 

  39. Y. X. Wang, G. N. Zhao, B. Yan, H. Y. Wang, W. Lu, and Y. Zhang, IEEE Trans. Appl. Supercond. 20, 1638 (2010). https://doi.org/10.1109/TASC.2010.2044236

    Article  ADS  Google Scholar 

  40. L. K. Varga, E. Kid-Koszb, E. Zsoldos, and E. Bakos, IEEE Trans. Magn. 30, 552 (1994). https://doi.org/10.1109/20.312333

    Article  ADS  Google Scholar 

  41. L. K. Varga, V. Franco, A. Kákay, Gy. Kovács, and F. Mazaleyrat, IEEE Trans. Magn. 37, 2229 (2001). https://doi.org/10.1109/20.951132

    Article  ADS  Google Scholar 

  42. P. Allia, M. Baricco, P. Tiberto, and F. Vinai, J. Appl. Phys. 74, 3137 (1993). https://doi.org/10.1063/1.354581

    Article  ADS  Google Scholar 

  43. P. Li, H. L. Su, Y. J. Song, and Y. C. Wu, Mater. Sci. Technol. 29, 460 (2013). https://doi.org/10.1179/1743284712Y.0000000160

    Article  Google Scholar 

  44. J. Kováč, B. Kunca, and L. Novák, J. Magn. Magn. Mater. 502, 166555 (2020). https://doi.org/10.1016/j.JMMM.2020.166555

    Article  Google Scholar 

  45. G. Herzer, in Handbook of Magnetism and Advanced Magnetic Materials (Wiley, Hoboken, 2007). https://doi.org/10.1002/9780470022184.hmm402

    Book  Google Scholar 

  46. G. Herzer, IEEE Trans. Magn. 25, 3327 (1989). https://doi.org/10.1109/20.42292

    Article  ADS  Google Scholar 

  47. R. Alben, J. Becker, and M. C. Chi, J. Appl. Phys. 49, 1653 (1978). https://doi.org/10.1063/1.324881

    Article  ADS  Google Scholar 

  48. W. M. Yang, H. S. Liu, C. C. Dun, Y. C. Zhao, and L. M. Dou, Mater. Sci. Technol. 28, 1465 (2012). https://doi.org/10.1179/1743284712Y.0000000074

    Article  Google Scholar 

  49. L. Varga and F. Mazaleyrat, in Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors, Vol. 184 of NATO Science Series, Ser. II: Math., Phys. Chem., Ed. by B. Idzikowski, P. Švec, and M. Miglierini (Springer, Dordrecht, 2005), p. 157. https://doi.org/10.1007/1-4020-2965-9_14

  50. O. Kubaschewski, Phase Diagrams of Binary Fe-based Systems (Springer, Berlin, 1982).

    Google Scholar 

  51. K. Hono, D. H. Ping, M. Ohnuma, and H. Onodera, Acta Mater. 47, 997 (1999). https://doi.org/10.1016/S1359-6454(98)00392-9

    Article  ADS  Google Scholar 

  52. Y. Wang, Y. Zhang, A. Takeuchi, A. Makino, and Y. Kawazoe, J. Appl. Phys. 120, 145102 (2016). https://doi.org/10.1063/1.4964433

    Article  ADS  Google Scholar 

  53. K. Hono and T. Sakurai, Appl. Surf. Sci. 87–88, 166 (1995). https://doi.org/10.1016/0169-4332(94)00513-3

    Article  ADS  Google Scholar 

  54. R. Jha, D. R. Diercks, N. Chakraborti, A. P. Stebner, and C. V. Ciobanu, Scr. Mater. 162, 331 (2019). https://doi.org/10.1016/j.scriptamat.2018.11.039

    Article  Google Scholar 

  55. Z. Yu, Y. Ying, W. Y. Xin, L. Wei, and Y. Biao, Sci. China Phys. Mech. Astron. 56, 1887 (2013). https://doi.org/10.1007/s11433-013-5133-2

    Article  ADS  Google Scholar 

  56. M. Matsuura, M. Nishijima, K. Takenaka, A. Takeuchi, H. Ofuchi, and A. Makino, J. Appl. Phys. 117, 17A324 (2015).

  57. K. Hono, Prog. Mater. Sci. 47, 621 (2002). https://doi.org/10.1016/S0079-6425(01)00007-X

    Article  Google Scholar 

  58. N. V. Ershov, Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, N. M. Kleinerman, V. V. Serikov, A. P. Potapov, and N. K. Yurchenko, in Nanocrystal (InTech, Rijeka, 2011), p. 415.

    Google Scholar 

  59. O. Zivotský, Y. Jirásková, A. Hendrych, V. Matejka, L. Klimsa, and J. Bursík, IEEE Trans. Magn. 48, 1367 (2012). https://doi.org/10.1109/TMAG.2011.2171479

    Article  ADS  Google Scholar 

  60. J. A. Moya, S. G. Caramella, and C. Berejnoib, J. Magn. Magn. Mater. 476, 248 (2019). https://doi.org/10.1016/j.JMMM.2019.01.008

    Article  ADS  Google Scholar 

  61. B. E. Warren, X-Ray Diffraction (Addison-Wesley, New York, 1969).

    Google Scholar 

  62. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed. (Prentice-Hall, New Jersey, 2001).

    Google Scholar 

  63. V. A. Milyutin, I. V. Gervaseva, E. Beaugnon, V. S. Gaviko and E. G. Volkova, Phys. Met. Metallogr. 118, 466 (2017).

    Article  ADS  Google Scholar 

  64. V. S. Tsepelev, Yu. N. Starodubtsev and V. Ya. Belozerov, Phys. Met. Metallogr. 119, 831 (2018).

    Article  ADS  Google Scholar 

  65. F. Mazaleyrat and L. K. Varga, IEEE Trans. Magn. 37, 2232 (2001). https://doi.org/10.1109/20.951133

    Article  ADS  Google Scholar 

  66. O. I. Gorbatov, A. R. Kuznetsov, Yu. N. Gornostyrev, A. V. Ruban, N. V. Ershov, V. A. Lukshina, Yu. P. Chernenkov, and V. I. Fedorov, J. Exp. Theor. Phys. 112, 848 (2011). https://doi.org/10.1134/S1063776111040066

    Article  ADS  Google Scholar 

  67. Yu. P. Chernenkov, N. V. Ershov, V. I. Fedorov, V. A. Lukshina, and A. P. Potapov, Phys. Solid State 52, 554 (2010). https://doi.org/10.1134/S1063783410030169

    Article  ADS  Google Scholar 

  68. G. Bertotti and F. Fiorillo, in Magnetic Alloys for Technical Applications. Soft Magnetic Alloys, Invar and Elinvar Alloys, Ed. by H. P. J. Wijn (Springer, Berlin, 1994), p. 51. https://materials.springer.com/lb/docs/sm_lbs_978-3-540-47246-9_16

    Google Scholar 

Download references

Funding

This study was supported within the State contract on the subject “Magnet” no. АААА-А18-118020290129-5 and the project no. 18-10-2-5 of the Ural Branch of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ershov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, N.V., Chernenkov, Y.P., Lukshina, V.A. et al. Effect of Temperature of Long Annealing on the Structure and Magnetic Properties of Nanocrystalline FeSiNbCuB Alloy. Phys. Solid State 63, 978–991 (2021). https://doi.org/10.1134/S1063783421070076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421070076

Keywords:

Navigation