Skip to main content
Log in

Dielectric and Thermal Properties of KNO3 Encapsulated in Carbon Nanotubes

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of the study of phase transitions of KNO3 encapsulated in carbon nanotubes are presented. It is shown that the temperature range of existence of KNO3 particle ferroelectric phase in nanotubes narrows, similarly to that in ferroelectric semiconductors. The results obtained suggest that external screening by the conductive matrix acts similarly to spontaneous polarization screening in conducting ferroelectrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. O. V. Rogazinskaya, S. D. Milovidova, A. S. Sidorkin, V. V. Chernyshev, and N. G. Babicheva, Phys. Solid State 51, 1518 (2009).

    Article  ADS  Google Scholar 

  2. S. V. Baryshnikov, E. V. Charnaya, E. V. Stukova, A. Yu. Milinskiy, and T. Cheng, Ferroelectrics 396, 3 (2010).

    Article  Google Scholar 

  3. S. V. Baryshnikov, C. T. Tien, E. V. Charnaya, and M. K. Lee, Ferroelectrics 363, 177 (2008).

    Article  Google Scholar 

  4. S. V. Baryshnikov, E. V. Charnaya, Yu. A. Shatskaya, and A. Yu. Milinskiy, Bull. Russ. Acad. Sci.: Phys. 75, 1112 (2011).

    Article  Google Scholar 

  5. A. Y. Milinskii, S. V. Baryshnikov, and A. A. Antonov, Phys. Solid State 59, 1783 (2017).

    Article  ADS  Google Scholar 

  6. B. F. Borisov, E. V. Charnaya, S. V. Baryshnikov, and A. L. Pirozerskii, Phys. Lett. A 375, 183 (2010).

    Article  ADS  Google Scholar 

  7. J. F. Scott, H. M. Duiker, P. D. Beale, B. Pouligny, K. Dimmler, M. Parris, D. Butler, and S. Eaton, Phys. B (Amsterdam, Neth.) 150, 160 (1988).

  8. A. Sieradzki, J. Komar, E. Rysiakiewicz-Pasek, A. Ciżman, and R. Poprawski, Ferroelectrics 402, 60 (2010).

    Article  Google Scholar 

  9. A. A. Naberezhnov, P. Yu. Vanina, A. A. Sysoeva, A. Ciżman, E. Rysiakiewicz-Pasek, and A. Hoser, Phys. Solid State 60, 442 (2018).

    Article  ADS  Google Scholar 

  10. S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskiy, Yu. A. Shatskaya, C. Tien, and D. Michel, Phys. B (Amsterdam, Neth.) 405, 3299 (2010).

  11. S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskii, E. V. Stukova, C. Tien, W. Bohlmann, and D. Michel, Phys. Solid State 51, 1243 (2009).

    Article  ADS  Google Scholar 

  12. A. Chen and A. Chernow, Phys. Rev. 154, 493 (1967).

    Article  ADS  Google Scholar 

  13. V. V. Deshpande, M. D. Karkhanavala, and U. R. K. Rao, J. Therm. Anal. Calorim. 6, 613 (1974).

    Article  Google Scholar 

  14. J. K. Nimmo and B. W. Lucas, Acta Crystallogr. B 32, 1968 (1971).

    Article  Google Scholar 

  15. A. V. Eletskii, Phys. Usp. 45, 369 (2002).

    Article  ADS  Google Scholar 

  16. W. L Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, Phys. Rev. B 50, 698 (1994).

    Article  ADS  Google Scholar 

  17. C. L. Wang, Y. Xin, X. S. Wang, and W. L. Zhong, Phys. Rev. B 62, 11423 (2000).

    Article  ADS  Google Scholar 

  18. A. L. Pirozerskii and E. V. Charnaya, Phys. Solid State 52, 620 (2010).

    Article  ADS  Google Scholar 

  19. B. Darinskii, A. Sidorkin, A. Sigov, and N. Popravko, Materials 11, 85 (2018).

    Article  ADS  Google Scholar 

  20. V. M. Fridkin, Ferroelectrics-Semiconductors (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  21. J. J. Hallers and W. T. Caspers, Phys. Status Solidi 36, 587 (1969).

    Article  Google Scholar 

  22. N. N. Trunov and E. V. Bursian, Phys. Status Solidi B 65, K129 (1974).

    Article  ADS  Google Scholar 

  23. Th. Natterman, Phys. Status Solidi B 51, 395 (1972).

    Article  ADS  Google Scholar 

  24. G. N. Dul’nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials (Energiya, Leningrad, 1974) [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-29-03004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Milinskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milinskii, A.Y., Baryshnikov, S.V., Stukova, E.V. et al. Dielectric and Thermal Properties of KNO3 Encapsulated in Carbon Nanotubes. Phys. Solid State 63, 872–876 (2021). https://doi.org/10.1134/S1063783421060147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421060147

Keywords:

Navigation