Skip to main content
Log in

Molecular Dynamics Simulation of the Influence of a Vacancy Concentration on the Tilt Boundary Migration Velocity in Nickel

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of vacancy concentration on the migration velocity of large-angle tilt grain boundaries with the disorientation axes 〈111〉 and 〈100〉 in nickel is studied by the molecular dynamics method. The dependence of the migration velocity on the concentration of vacancies introduced at the initial simulation stage is shown to have a maximum near 1%. A decrease in the migration velocity during further increase in the free volume is mainly due to the boundary retardation by low-mobile vacancy clusters, which already cannot be absorbed by the boundary at high vacancy concentrations. The second cause of a decrease in the migration velocity with an increase in the vacancy concentration above 1% is a decrease in the surface tension of grain boundaries and, correspondingly, the moving force of their migration due to a finite sorption capacity of the boundaries with respect to the excess free volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Gottstein and L. S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd ed. (CRC, Boca Raton, 2009).

    Book  Google Scholar 

  2. O. A. Kaibyshev and R. Z. Valiev, Grain Boundaries and Metal Properties (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  3. Q. Zhu, S. C. Zhao, C. Deng, X. H. An, K. X. Song, S. X. Mao, and J. W. Wang, Acta Mater. 199, 42 (2020).

    Article  ADS  Google Scholar 

  4. G. Gottstein, D. A. Molodov, and L. S. Shvindlerman, Interface Sci. 6, 7 (1998).

    Article  Google Scholar 

  5. L.-L. Niu, Q. Peng, F. Gao, Zh. Chen, Y. Zhang, and G.-H. Lu, J. Nucl. Mater. 512, 246 (2018).

    Article  ADS  Google Scholar 

  6. G. M. Poletaev, I. V. Zorya, R. Y. Rakitin, M. A. Iliina, and M. D. Starostenkov, Lett. Mater. 9, 391 (2019).

    Article  Google Scholar 

  7. F. Haessner, J. Phys. Colloq. C 36, 345 (1975).

    Google Scholar 

  8. H. Takahashi and N. Hashimoto, Mater. Trans. 34, 1027 (1993).

    Article  Google Scholar 

  9. G. Lu and N. Kioussis, Phys. Rev. B 64, 024101 (2001).

    Article  ADS  Google Scholar 

  10. P. Ballo, N. Kioussis, and G. Lu, Phys. Rev. B 64, 024104 (2001).

    Article  ADS  Google Scholar 

  11. B. Oberdorfer, D. Setman, E.-M. Steyskal, A. Hohenwater, W. Sprengel, M. Zehetbauer, R. Pippan, and R. Wurschum, Acta Mater. 68, 189 (2014).

    Article  ADS  Google Scholar 

  12. S. V. Divinski, Diff. Found. 5, 57 (2015).

    Article  Google Scholar 

  13. R. T. Murzaev and A. A. Nazarov, Phys. Met. Metall. 102, 198 (2006).

    Article  Google Scholar 

  14. Y. Estrin, G. Gottstein, E. Rabkin, and L. S. Shvindlerman, Acta Mater. 49, 673 (2001).

    Article  ADS  Google Scholar 

  15. V. G. Sursaeva, G. Gottstein, and L. S. Shvindlerman, Scr. Mater. 116, 91 (2016).

    Article  Google Scholar 

  16. Y. Huang and F. J. Humphreys, Acta Mater. 47, 2259 (1999).

    Article  ADS  Google Scholar 

  17. Y. Huang and F. J. Humphreys, Mater. Chem. Phys. 132, 166 (2012).

    Article  Google Scholar 

  18. G. M. Poletaev, I. V. Zorya, M. D. Starostenkov, R. Yu. Rakitin, and P. Ya. Tabakov, J. Exp. Theor. Phys. 128, 88 (2019).

    Article  ADS  Google Scholar 

  19. G. M. Poletaev, I. V. Zorya, R. Yu. Rakitin, D. V. Kokhanenko, and M. D. Starostenkov, Izv. Vyssh. Uchebn. Zaved., Chern. Metall. 61, 974 (2018).

    Google Scholar 

  20. F. Cleri and V. Rosato, Phys. Rev. B 48, 22 (1993).

    Article  ADS  Google Scholar 

  21. G. M. Poletaev and I. V. Zorya, J. Exp. Theor. Phys. 131, 432 (2020).

    Article  ADS  Google Scholar 

  22. G. M. Poletaev, D. V. Novoselova, I. V. Zorya, and M. D. Starostenkov, Phys. Solid State 60, 847 (2018).

    Article  ADS  Google Scholar 

  23. M. Upmanyu, D. J. Srolovitz, L. S. Shvindlerman, and G. Gottstein, Acta Mater. 50, 1405 (2002).

    Article  ADS  Google Scholar 

  24. H. Zhang, M. Upmanyu, and D. J. Srolovitz, Acta Mater. 53, 79 (2005).

    Article  ADS  Google Scholar 

  25. N. Bernstein, Acta Mater. 56, 1106 (2008).

    Article  ADS  Google Scholar 

  26. Z. T. Trautt and Y. Mishin, Acta Mater. 60, 2407 (2012).

    Article  ADS  Google Scholar 

  27. D. A. Molodov, B. B. Straumal, and L. S. Shvindlerman, Scr. Mater. 18, 207 (1984).

    Google Scholar 

  28. M. A. Fortes and A. M. Deus, Mater. Sci. Forum 455–456, 648 (2004).

    Article  Google Scholar 

  29. O. B. Perevalova, E. V. Konovalova, N. A. Koneva, and E. V. Kozlov, J. Mater. Sci. Technol. 19, 593 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Poletaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poletaev, G.M., Rakitin, R.Y. Molecular Dynamics Simulation of the Influence of a Vacancy Concentration on the Tilt Boundary Migration Velocity in Nickel. Phys. Solid State 63, 748–753 (2021). https://doi.org/10.1134/S1063783421050140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421050140

Keywords:

Navigation