Skip to main content
Log in

On the Thermodynamic Parameters of an Adiabatically Isolated Body

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Main thermodynamic functions for an adiabatically isolated body with a constant internal energy have been determined within the formalism of covariant quantum theory with reparameterization invariance of intrinsic time. The modification does not change the dynamic content of the theory on the classical level; however, it makes it possible to determine the unitary evolution operator in the quantum theory. In this operator, intrinsic time is a measure of internal motion of a body. A transition to statistical mechanics is performed by Wick rotation of intrinsic time in a complex plane. As a result, representation of the partition function of an isolated body in the form of Euclidean functional integral over the space of closed trajectories in the configuration space is obtained. The average reciprocal temperature and free energy, which underlie the thermal mechanics of an adiabatically isolated body, are determined for a specified internal energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

  2. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).

    MATH  Google Scholar 

  3. V. R. Regel’, A. I. Slutsker, and E. E. Tomashevskii, The Kinetic Nature of the Strength of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  4. J. P. Joule, Proc. R. Soc. 8, 355 (1857).

  5. W. Thompson (Lord Kelvin), Trans. R. Soc. Edinburgh 20, 261 (1853).

    Article  Google Scholar 

  6. A. A. Benam, G. Viola, and T. Korakianitis, J. Therm. Anal. Calorim. 100, 941 (2010).

    Article  Google Scholar 

  7. T. Dauxois and S. Ruffo, Scholarpedia 3, 5528 (2008).

    Article  ADS  Google Scholar 

  8. M. A. Porter, N. J. Zabusky, B. Hu, and D. K. Campbell, Am. Sci. 97, 214 (2009).

    Article  Google Scholar 

  9. M. Onorato, L. Vozella, D. Proment, and Y. V. Lvov, Proc. Nat. Acad. Sci. U. S. A. 112, 4208 (2015).

    Article  ADS  Google Scholar 

  10. R. Anufriev, S. Gluchko, S. Volz, and M. Nomura, ACS Nano 12, 11928 (2018).

    Article  Google Scholar 

  11. O. S. Loboda, E. A. Podolskaya, D. V. Tsvetkov, and A. M. Krivtsov, Continuum Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-020-00921-0

  12. V. A. Kuzkin and A. M. Krivtsov, Phys. Rev. 101, 042209 (2020).

    ADS  MathSciNet  Google Scholar 

  13. R. Feynmann and A. Hibbs, Quantum Mechanics and Path Integrals (Dover, New York, 2010).

    Google Scholar 

  14. J. Govaerts, CERN-TH No. 5010/88 (CERN, 1988).

    Google Scholar 

  15. R. P. Feynman, Statistical Mechanics (Benjamin, MA, 1972).

    Google Scholar 

  16. N. N. Gorobei and A. S. Luk’yanenko, Phys. Solid State 62, 2400 (2020).

    Article  ADS  Google Scholar 

  17. H. C. Ottinger, A Philosophical Approach of Quantum Field Theory (Cambridge Univ. Press, Cambridge, 2018). https://doi.org/10.1017/9781108227667

    Book  MATH  Google Scholar 

  18. M. E. Peskin and D. V. Schroeder, Introduction of Quantum Field Theory (CRC, Boca Raton, FL, 2019).

    Google Scholar 

  19. N. N. Gorobei and A. S. Luk’yanenko, Phys. Solid State 61, 650 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Gorobei.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorobei, N.N., Luk’yanenko, A.S. On the Thermodynamic Parameters of an Adiabatically Isolated Body. Phys. Solid State 63, 706–708 (2021). https://doi.org/10.1134/S1063783421050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421050073

Keywords:

Navigation