Skip to main content
Log in

Dynamic Thermoelastic Effect in Materials with a Defect Structure

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A change in temperature during adiabatic elastic deformation of solids (thermoelastic effect) is determined in terms of the thermodynamic approach taking into account the existence of internal defects in them. A contribution of the defect structure of a material to the Kelvin formula as determined as there are mechanical stresses in a material. It is shown that the changes in the thermal expansion coefficient of a material due to a dependence of the elastic modulus and the defect concentration on temperature can have opposite directionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Thompson (Lord Kelvin), Trans. R. Soc. Edinburgh 20, 261 (1853).

    Article  Google Scholar 

  2. W. Thompson (Lord Kelvin), Mathematical and Physical Papers (Cambridge Univ. Press, London, 1890).

    Google Scholar 

  3. V. L. Gilyarov, A. I. Slutsker, V. P. Volodin, and A. I. Laius, Phys. Solid State 40, 1404 (1998).

    Article  ADS  Google Scholar 

  4. V. L. Hilarov and A. I. Slutsker, Phys. Solid State 56, 2493 (2014).

    Article  ADS  Google Scholar 

  5. A. K. Wong, R. Jones, and J. G. Sparrow, J. Phys. Chem. Solids 48, 749 (1987).

    Article  ADS  Google Scholar 

  6. Y. H. Pao, W. Sachse, and H. Fukuoka, in Physical Acoustics (Academic, New York, 1984), Vol. XVII, p. 62.

    Google Scholar 

  7. A. N. Guz’, Elastic Waves in Bodies with Initial Stresses (Nauk. Dumka, Kiev, 1986) [in Russian].

    Google Scholar 

  8. P. Ferraro and R. B. McLellan, Met. Trans. A 8, 1563 (1977).

    Article  Google Scholar 

  9. J. Vanhellemont, A. K. Swarnakar, and O. van der Biest, ECS Trans. 64 (11), 283 (2014).

    Article  Google Scholar 

  10. V. V. Murav’ev, L. B. Zuev, and K. L. Komarov, Sound Speed and Structure of Steels and Alloys (Nauka, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  11. R. J. Greene, E. A. Patterson, and R. E. Rowlands, in Springer Handbook of Experimental Solid Mechanics, Ed. by W. N. Sharpe, Jr. (Springer, Boston, MA, 2008), p. 743.

    Google Scholar 

  12. R. Emery and J. M. Dulieu-Barton, Composites, Part A 41, 1729 (2010).

    Article  Google Scholar 

  13. P. Bian, X. Shao, and J. L. Du, Appl. Sci. 9, 2231 (2019).

    Article  Google Scholar 

  14. R. A. Tomlinson and E. J. Olden, Strain 35, 49 (1999).

    Article  Google Scholar 

  15. S. J. Lin, W. A. Samad, A. A. Khaja, and R. E. Rowlands, Exp. Mech. 55, 653 (2015).

    Article  Google Scholar 

  16. K. L. Muratikov, A. L. Glazov, D. N. Rose, and J. E. Dumar, J. Appl. Phys. 88, 2948 (2000).

    Article  ADS  Google Scholar 

  17. K. L. Muratikov, A. L. Glazov, D. N. Rose, and J. E. Dumar, High Temp. High Press. 33, 285 (2001).

    Article  Google Scholar 

  18. K. L. Muratikov and A. L. Glazov, Tech. Phys. 48, 1028 (2003).

    Article  Google Scholar 

  19. A. L. Glazov and K. L. Muratikov, J. Phys.: Conf. Ser. 1697, 012186 (2020).

    Google Scholar 

  20. A. L. Glazov, N. F. Morozov, and K. L. Muratikov, Phys. Solid State 58, 1735 (2016).

    Article  ADS  Google Scholar 

  21. A. L. Glazov and K. L. Muratikov, Tech. Phys. Lett. 45, 902 (2019).

    Article  ADS  Google Scholar 

  22. A. L. Glazov and K. L. Muratikov, Tech. Phys. Lett. 46, 477 (2020).

    Article  ADS  Google Scholar 

  23. N. Sandberg, B. Magyari-Köpe, and T. R. Mattsson, Phys. Rev. Lett. 89, 065901 (2002).

    Article  ADS  Google Scholar 

  24. E. Clouet, Acta Mater. 54, 3543 (2006).

    Article  ADS  Google Scholar 

  25. C. Wolverton, Acta Mater. 55, 5867 (2007).

    Article  ADS  Google Scholar 

  26. G. A. Young, Jr. and J. R. Scully, Acta Mater. 46, 6337 (1998).

    Article  ADS  Google Scholar 

  27. S. P. Ogden, T. M. Lu, and J. L. Plawsky, J. Appl. Phys. 109, 152904 (2016).

    Google Scholar 

  28. Y. Dong, L. Qi, J. Li, and I. W. Chen, Acta Mater. 126, 438 (2017).

    Article  ADS  Google Scholar 

  29. F. Kh. Mirzoev, V. Ya. Panchenko, and L. A. Shelepin, Phys. Usp. 39, 1 (1996).

    Article  ADS  Google Scholar 

  30. A. M. Kosevich, Fundamentals of Crystal Lattice Mechanics (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  31. S. N. Zhurkov, Int. J. Fract. Mech. 1, 311 (1965).

    Article  Google Scholar 

  32. S. N. Zhurkov, Sov. Phys. Solid State 25, 1797 (1983).

    Google Scholar 

  33. H. Spikes, Friction 6, 1 (2018).

    Article  Google Scholar 

  34. A. L. Glazov and K. L. Muratikov, J. Appl. Phys. 128, 095106 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Glazov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazov, A.L., Muratikov, K.L. Dynamic Thermoelastic Effect in Materials with a Defect Structure. Phys. Solid State 63, 702–705 (2021). https://doi.org/10.1134/S1063783421050061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421050061

Keywords:

Navigation