Skip to main content
Log in

Structure and Electrical Conductivity of the Perovskites Pr1 – xSrxMnO3 (x = 0, 0.15, or 0.25)

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The manganites Pr1 – xSrxMnO3 (x = 0, 0.15, or 0.25) prepared by a solid state synthesis method at a temperature of 1250°C have an orthorhombic perovskite-like structure (the Pbnm space group). To investigate the effect that the substitution of strontium for praseodymium has on temperature-related features of crystal lattice transformation in the considered perovskites, we perform multifaceted characterization of the samples using high-temperature X-ray diffraction and differential thermal analysis. We find that adding strontium considerably lowers the temperature of Jahn–Teller effect. The conduction of all considered samples exhibits a semiconducting behavior. Doping with strontium raises the electrical conductivity of the praseodymium manganites, especially at temperatures below 450°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  2. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  3. Y.-K. Liu, Y.-W. Yin, and X.-G. Li, Chin. Phys. B 22, 087502 (2013).

    Article  ADS  Google Scholar 

  4. O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, D. Jorgensen, and S. Short, Phys. Rev. B 67, 094431 (2003).

    Article  ADS  Google Scholar 

  5. T. Kalmykova, A. Vakula, S. Nedukh, S. Tarapov, A. Belous, V. Krivoruchko, and R. Suhov, Funct. Mater. 25, 241 (2018).

    Article  Google Scholar 

  6. A.-A. Haghiri-Gosnet and J.-P. Renard, J. Phys. D 36, 127 (2003).

    Article  Google Scholar 

  7. R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science (Washington, DC, U. S.) 282, 85 (1998).

    Article  ADS  Google Scholar 

  8. L. W. Martin and R. Ramesh, Acta Mater. 60, 2449 (2012).

    Article  ADS  Google Scholar 

  9. E. V. Tsipis and V. V. Kharton, J. Solid State Electrochem. 12, 1367 (2008).

    Article  Google Scholar 

  10. C. Sun and U. Stimming, J. Power Sources 171, 247 (2007).

    Article  ADS  Google Scholar 

  11. H.-R. Rim, S.-Ki. Jeung, E. Jung, and Ju.-S. Lee, Mater. Chem. Phys. 52, 54 (1998).

    Article  Google Scholar 

  12. G. Ch. Kostogloudis, N. Vasilakos, and Ch. Ftikos, J. Eur. Ceram. Soc. 17, 1513 (1997).

    Article  Google Scholar 

  13. M. W. Shaikh and D. Varshney, Mater. Sci. Semicond. Proc. 27, 418 (2014).

    Article  Google Scholar 

  14. W. Boujelben, A. Cheikh-Rouhou, M. Ellouze, and J. C. Joubert, Phase Trans. A 71, 127 (2000).

    Article  Google Scholar 

  15. A. Llobet, C. Ritter, S. Frontera, Kh. Obradors, J. L. Garcia-Muñoz, and J. A. Alonso, J. Magn. Magn. Mater. 196–197, 549 (1999).

    Article  ADS  Google Scholar 

  16. S. Sankarajan, K. Sakthipandi, and V. Rajendran, Mater. Res. 5, 517 (2012).

    Article  Google Scholar 

  17. B. Dabrovski, S. Kolesnik, A. Baszczuk, O. Chmaissem, T. Maxwell, and J. Mais, Solid State Chem. 178, 629 (2005).

    Article  ADS  Google Scholar 

  18. M. A. Pena and J. Fierro, Chem. Rev. 101, 1981 (2001).

    Article  Google Scholar 

  19. V. B. Balakireva, V. P. Gorelov, L. A. Dunyushkina, and A. V. Kuz’min, Phys. Solid State 61, 515 (2019).

    Article  ADS  Google Scholar 

  20. K. Knížek, Z. Jirák, E. Pollert, and F. Zounová, J. Solid State Chem. 100, 292 (1992).

    Article  ADS  Google Scholar 

  21. S. Hcini, S. Zemni, A. Triki, H. Rahmouni, and M. Boudard, J. Alloys Compd. 509, 1394 (2011).

    Article  Google Scholar 

  22. E. Pollert, S. Krupička, and E. Kuzmičová, J. Phys. Chem. Solids 43, 1137 (1982).

    Article  ADS  Google Scholar 

  23. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  24. J. A. Alonso, M. J. Martinez-Lope, and M. T. Casais, Inorg. Chem. 39, 917 (2000).

    Article  Google Scholar 

  25. L. B. Vedmid’ and O. M. Fedorova, Russ. J. Phys. Chem. A 94, 1741 (2020).

    Article  Google Scholar 

  26. L. Vedmid’, O. Fedorova, V. Balakireva, and V. Balakirev, Proc. Appl. Ceram. 14, 203 (2020).

    Article  Google Scholar 

  27. O. M. Fedorova, L. B. Vedmid’, and V. M. Dimitrov, Inorg. Mater. 55, 1026 (2019).

    Article  Google Scholar 

  28. O. M. Fedorova, L. B. Vedmid’, G. A. Kozhina, V. B. Balakireva, and V. F. Balakirev, Dokl. Phys. Chem. 492, 74 (2020).

    Article  Google Scholar 

  29. T.-L. Wen, H. Tu, Z. Xu, and O. Yamamoto, Solid State Ionics 121, 25 (1999).

    Article  Google Scholar 

Download references

Funding

This work was supported within a state assignment to the Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, and performed using the facilities of the Center for Collective Use “Ural-M.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Vedmid’.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedmid’, L.B., Fedorova, O.M., Balakireva, V.B. et al. Structure and Electrical Conductivity of the Perovskites Pr1 – xSrxMnO3 (x = 0, 0.15, or 0.25). Phys. Solid State 63, 660–665 (2021). https://doi.org/10.1134/S1063783421040235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421040235

Keywords:

Navigation