Skip to main content
Log in

Thermophoresis of Single Atomic Particles in Open Nanotubes

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using the molecular dynamics method, the high efficiency of thermophoresis of particles (atoms) inside single-walled carbon nanotubes (CNTs) is shown. The placement of a particle inside the CNT involved in the heat-transfer process leads to its movement in the direction of the heat flow with a constant velocity, the value of which weakly depends on the nanotube length. The heat flux along the CNT leads to the formation of a constant thermophoresis force that acts on the particles inside it, the direction of which coincides with the direction of heat transfer. The single-atom nature of the particle makes it possible to numerically calculate this force and to determine the contribution of the interaction with each thermal phonon of the nanotube to it. It is shown that the value of the force is almost completely determined by the interaction of the particle with long-wavelength flexural phonons of the nanotube, which have a large free path. Therefore, the particle velocity and the value of the thermophoresis force weakly depend on the length of the nanotube, but are determined by the temperature difference at its ends. Because of this, the nature of thermophoresis of particles inside nanotubes is ballistic rather than diffusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Barreiro, R. Rurali, E. R. Hernández, J. Moser, T. Pichler, L. Forró, and A. Bachtold, Science (Washington, DC, U. S.) 320, 775 (2008).

    Article  ADS  Google Scholar 

  2. L. V. Radushkevich and V. M. Luk’yanovich, Zh. Fiz. Khim. 26, 88 (1952).

    Google Scholar 

  3. S. Iijima, Nature (London, U.K.) 354, 56 (1991).

    Article  ADS  Google Scholar 

  4. A. V. Eletskii, Phys. Usp. 45, 369 (2002).

    Article  ADS  Google Scholar 

  5. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

    Article  ADS  Google Scholar 

  6. P. A. E. Schoen, J. H. Walther, S. Arcidiacono, D. Poulikakos, and P. Koumoutsakos, Nano Lett. 6, 1910 (2006).

    Article  ADS  Google Scholar 

  7. P. A. E. Schoen, J. H. Walther, D. Poulikakos, and P. Koumoutsakos, Appl. Phys. Lett. 90, 253116 (2007).

    Article  ADS  Google Scholar 

  8. J. Shiomi and S. Maruyama, Nanotechnology 20, 055708 (2009).

    Article  ADS  Google Scholar 

  9. E. Oyarzua, J. H. Walther, C. M. Megaridis, P. Koumoutsakos, and H. A. Zambrano, ACS Nano 11, 9997 (2017).

    Article  Google Scholar 

  10. R. Rajegowda, S. K. Kannam, R. Hartkamp, and S. P. Sathian, Nanotechnology 28, 155401 (2017).

    Article  ADS  Google Scholar 

  11. E. Oyarzua, J. H. Walther, and H. A. Zambrano, Phys. Chem. Chem. Phys. 20, 3672 (2018).

    Article  Google Scholar 

  12. Q. Cao, J. Phys. Chem. C 123, 29750 (2019).

    Article  Google Scholar 

  13. A. Panahi, P. Sadeghi, A. Akhlaghi, and M. H. Sabour, Diamond Rel. Mater. 110, 108105 (2020).

    Article  ADS  Google Scholar 

  14. H. A. Zambrano, J. H. Walther, and R. L. Jaffe, J. Chem. Phys. 131, 241104 (2009).

    Article  ADS  Google Scholar 

  15. M. V. D. Prasad, and B. Bhattacharya, Nano Lett. 16, 2174 (2016).

    Article  ADS  Google Scholar 

  16. M. V. D. Prasad, and B. Bhattacharya, Nano Lett. 17, 2131 (2017).

    Article  ADS  Google Scholar 

  17. R. Rurali and E. R. Hernández, Chem. Phys. Lett. 497, 62 (2010).

    Article  ADS  Google Scholar 

  18. N. Wei, H.-Q. Wang, and J.-C. Zheng, Nanoscale Res. Lett. 7, 154 (2012).

    Article  ADS  Google Scholar 

  19. A. V. Savin and Y. S. Kivshar, Sci. Rep. 2, 1012 (2012).

    Article  ADS  Google Scholar 

  20. M. Jafary-Zadeh, C. D. Reddya, and Y.-W. Zhang, Phys. Chem. Chem. Phys. 16, 2129 (2014).

    Article  Google Scholar 

  21. M. Becton and X. Wang, J. Chem. Theory Comput. 10, 722 (2014).

    Article  Google Scholar 

  22. E. Panizon, R. Guerra, and E. Tosatti, Proc. Natl. Acad. Sci. U. S. A. 114, E7035 (2017).

    Article  ADS  Google Scholar 

  23. A. V. Savin, Y. S. Kivshar, and B. Hu, Phys. Rev. B 82, 195422 (2010).

    Article  ADS  Google Scholar 

  24. W. D. Luedtke and U. Landman, Phys. Rev. Lett. 82, 3835 (1999).

    Article  ADS  Google Scholar 

  25. A. V. Savin, B. Hu, and Y. S. Kivshar, Phys. Rev. B 80, 195423 (2009).

    Article  ADS  Google Scholar 

  26. A. V. Savin and O. I. Savina, Phys. Solid State 61, 279 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by a subsidy allocated by the Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, for the implementation of State Assignment under topic no. 0082-2014-0013. Computing resources were provided by the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.V., Savina, O.I. Thermophoresis of Single Atomic Particles in Open Nanotubes. Phys. Solid State 63, 811–818 (2021). https://doi.org/10.1134/S106378342104020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342104020X

Keywords:

Navigation