Skip to main content
Log in

A New Scenario for the Kinetics of Charging Dielectrics under Irradiation with Medium-Energy Electrons

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Based on a critical analysis of previous studies on the charging mechanisms of dielectric targets under the action of medium-energy (1−30 keV) electron beams, a significant number of conflicting data have been revealed in models of charging, both theoretical and experimental. The cause-and-effect relationships of the physical phenomenon of charging have been revised and refined aiming to eliminate the contradictions that have arisen in the interpretation of the processes of electronic charging of dielectrics. After extensive experimental studies of a wide class of dielectrics, general regularities of the kinetics of charging dielectric targets have been established depending on the number of initial and radiation-induced traps, the density j0 of current of irradiating electrons and their energy E0. The secondary emission properties of a charged dielectric are shown to be fundamentally different from those of an uncharged one, and the electron emission coefficient σ, depending on E0, is not the only determining factor of positive or negative charging. When considering the processes of charging, for the first time, primary thermalized electrons are taken into account, which significantly change the general charging scenario, and the key role of the density of the formed radiation defects in charging kinetics is shown. In the proposed model, the decisive stabilizing effect of the onset of equilibrium state charging is the internal electric field Fdip generated during irradiation between the positive and negatively charged layers in the near-surface region of the dielectric. The main driving factor of the self-regulating self-consistent process of charging dielectrics under electron irradiation is not only the electron emission coefficient, as has been generally believed earlier, but the formation of the electric field of the dipole layer of charges. This critical control field Fcr is of the order of 0.5 MV/cm. This field is approximately the same for all dielectrics at any values of E0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. L. B. Schein, Science (Washington, DC, U. S.) 316, 1573 (2007).

    Article  Google Scholar 

  2. H. Miyake, K. Nitta, S. Michizono, and Y. Saito, J. Vac. Soc. Jpn. 50, 378 (2007).

    Article  Google Scholar 

  3. M. I. Panasyuk and L. S. Novikov, The Model of Space (KDU, Moscow, 2007) [in Russian].

    Google Scholar 

  4. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  5. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, Berlin, 1998).

    Book  Google Scholar 

  6. J. Cazaux, Nucl. Instrum. Methods Phys. Res., Sect. B 244, 307 (2006).

    Google Scholar 

  7. J. Cazaux, J. Electron. Spectrosc. Rel. Phenom. 176, 58 (2010).

    Article  Google Scholar 

  8. A. Melchinger and S. Hofmann, J. Appl. Phys. 78, 6224 (1995).

    Article  ADS  Google Scholar 

  9. E. N. Evstaf’eva, E. I. Rau, V. N. Mileev, L. S. Novikov, S. A. Ditsman, and R. A. Sennov, Persp. Mater. 4 (11) (2010).

  10. I. A. Glavatskikh, V. S. Kortov, and H.-J. Fitting, J. Appl. Phys. 89, 44 (2001).

    Article  Google Scholar 

  11. M. Touzin, D. Goeuriot, C. Guerret-Piecourt, D. Juve, D. Treheux, and H.-J. Fitting, J. Appl. Phys. 99, 114110 (2006).

    Article  ADS  Google Scholar 

  12. N. Cornet, D. Goeuriot, C. Guerret-Piecourt, D. Juve, D. Treheux, M. Touzin, and H.-J. Fitting, J. Appl. Phys. 103, 064110 (2008).

    Article  ADS  Google Scholar 

  13. V. V. Aristov, L. S. Kokhanchik, K. P. Meyer, and H. Blumtriff, Phys. Status Solidi A 78, 229 (1983).

    Article  ADS  Google Scholar 

  14. L. Frank, M. Zadrazil, and I. Mullerova, Microchim. Acta 13, 289 (1996).

    Google Scholar 

  15. M. Belhaj, O. Jbara, M. N. Filippov, E. I. Rau, and M. V. Andrianov, Appl. Surf. Sci. 177, 58 (2001).

    Article  ADS  Google Scholar 

  16. S. Fakhfakh, O. Jbara, M. Belhaj, Z. Fakhfakh, A. Kallel, and E. I. Rau, Eur. Phys. J. Appl. Phys. 21, 137 (2003).

    Article  ADS  Google Scholar 

  17. H. Gong and C. Ong, J. Appl. Phys. 75, 449 (1994).

    Article  ADS  Google Scholar 

  18. J. Liebault, K. Zarbout, D. Moya-Siesse, J. Bernardini, and G. Moya, Appl. Surf. Sci. 9852, 1 (2003).

    Google Scholar 

  19. A. Boughariou, G. Blaise, D. Braga, and A. Kallel, J. Appl. Phys. 95, 4117 (2004).

    Article  ADS  Google Scholar 

  20. K. Zarbout, A. Ahmed, G. Moya, J. Bernardini, D. Goeuriot, and A. Kallel, J. Appl. Phys. 103, 054107 (2008).

    Article  ADS  Google Scholar 

  21. K. Said, G. Damamme, A. Ahmed, G. Moya, and A. Kallel, Appl. Surf. Sci. 297, 45 (2014).

    Article  ADS  Google Scholar 

  22. M. Boubaya and G. Blaise, Eur. Phys. J. Appl. Phys. 37, 79 (2007).

    Article  ADS  Google Scholar 

  23. T. Thome, D. Braga, and G. Blaise, J. Appl. Phys. 95, 2619 (2004).

    Article  ADS  Google Scholar 

  24. S. Le Roy, F. Baudoin, V. Griseri, and G. Teyssedre, J. Appl. Phys. 112, 023704 (2012).

    Article  ADS  Google Scholar 

  25. B. Raftary, N. V. Budko, and C. Voik, J. Appl. Phys. 118, 204101 (2015).

    Article  ADS  Google Scholar 

  26. R. Pacaud, T. Paulmier, and P. Sarrailh, J. Appl. Phys. 122, 245106 (2017).

    Article  ADS  Google Scholar 

  27. N. Chorbel, A. Kallel, and G. Damamme, Micron 112, 35 (2018).

    Article  Google Scholar 

  28. J. Liu, H.-B. Zhang, Y.-H. Ding, Z. Yan, J. Tong, Y. Yuan, and Q. Zhao, Micron 16, 100 (2019).

    Article  Google Scholar 

  29. E. I. Rau, A. A. Tatarintsev, E. Yu. Zykova, I. P. Ivanenko, S. Yu. Kupreenko, K. F. Minnebaev, and A. A. Khaidarov, Phys. Solid State 59, 1526 (2017).

    Article  ADS  Google Scholar 

  30. E. I. Rau, A. A. Tatarintsev, and E. Y. Zykova, Nucl. Instrum. Methods Phys. Res., Sect. B 460, 141 (2019).

    Google Scholar 

  31. E. N. Evstaf’eva, E. I. Rau, and A. A. Tatarintsev, Mosc. Univ. Phys. Bull. 68, 128 (2013).

    Article  ADS  Google Scholar 

  32. B. Askri, K. Raouadi, R. Renoud, and B. Yangui, J. Electrostat. 67, 695 (2009).

  33. M. Kotera, K. Yamaguchi, and H. Suga, Jpn. J. Appl. Phys. 38, 7176 (1999).

    Article  ADS  Google Scholar 

  34. A. Palov, H. Fujii, Yu. Mankelevich, T. Rakhimova, and M. Baklanov, Polym. Degrad. Stab. 97, 802 (2012).

    Article  Google Scholar 

  35. J. P. Vigourous, J. P. Duraud, A. Le Moel, and C. Le Gressus, J. Appl. Phys. 57, 5139 (1985).

    Article  ADS  Google Scholar 

  36. G. Blaise and C. Le Gressus, AIP Adv. 8, 095228 (2018).

    Article  ADS  Google Scholar 

  37. R. Hofmann, J. R. Dennison, C. D. Thomson, and J. Albertsen, IEEE Trans. Plasma Sci. 36, 2238 (2008).

    Article  ADS  Google Scholar 

  38. R. Hofmann and J. R. Dennison, IEEE Trans. Plasma Sci. 40, 298 (2012).

    Article  ADS  Google Scholar 

  39. T. Paulmier, R. Hanna, M. Belhaj, et al., IEEE Trans. Plasma Sci. 41, 3422 (2013).

    Article  ADS  Google Scholar 

  40. K. Guerch, T. Paulmier, J. R. Dennison, J. Dekany, P. Lenormand, and F. Guillemet-Fritsch, J. Spacecr. Rockets 53, 1100 (2016).

    Article  ADS  Google Scholar 

  41. A. I. Titov and S. O. Kucheyev, J. Appl. Phys. 92, 5740 (2002).

    Article  ADS  Google Scholar 

  42. R. Renoud, F. Mady, C. Attard, J. Beigarre, and J.‑P. Ganachaud, Phys. Status Solidi A 201, 2119 (2004).

    Article  ADS  Google Scholar 

  43. S. G. Boyev, V. A. Paderin, and A. P. Tyutnev, J. Electrostat. 26, 133 (1991).

  44. D. J. DiMaria, E. Cartier, and D. Arnold, J. Appl. Phys. 73, 3367 (1993).

    Article  ADS  Google Scholar 

  45. V. S. Vavilov, A. S. Kiv, and O. R. Niyazova, Defect Formation and Migration Mechanisms in Semiconductors (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 18-02-00813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Rau.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rau, E.I., Tatarintsev, A.A. A New Scenario for the Kinetics of Charging Dielectrics under Irradiation with Medium-Energy Electrons. Phys. Solid State 63, 628–643 (2021). https://doi.org/10.1134/S1063783421040181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421040181

Keywords:

Navigation