Skip to main content
Log in

Mg2Sn Stannide under Pressure: First-Principles Evolutionary Search Results

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The search of optimal structures of magnesium stannide Mg2Sn has been performed using the software suite implementing the evolution algorithm based on the density functional theory (DFT). It is shown that, at pressure P ~ 5.2 GPa, the well-known hexagonal symmetry structure P63/mmc is instable and transits to the orthorhombic symmetry structure Pmmm. The latter is retained stable to high pressures P ~ 250 GPa and can exist together with orthorhombic symmetry structure Cmmm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Vantomme, G. Lanouche, J. E. Mahan, and J. P. Becker, Microelectron. Eng. 50, 237 (2000).

    Article  Google Scholar 

  2. A. S. Gouralnik, S. A. Dotsenko, and N. G. Galkin, Phys. Status Solidi 10, 1742 (2013).

    Article  Google Scholar 

  3. S. A. Dotsenko, Yu. V. Luniakov, A. S. Gouralnik, A. K. Gutakovskii, and N. G. Galkin, J. Alloys Compd. 778, 514 (2019).

    Article  Google Scholar 

  4. A. Shevlyagin, I. Chernev, N. Galkin, A. Gerasimenko, A. Gutakovskii, H. Hoshida, Y. Terai, N. Nishikawa, and K. Ohdaira, Sol. Energy 211, 383 (2020).

    Article  ADS  Google Scholar 

  5. J. Tani, M. Takahashi, and H. Kido, J. Alloys Compd. 485, 764 (2009).

    Article  Google Scholar 

  6. M. Cahana and Y. Gelbstein, Intermetallics 120, 106767 (2020).

    Article  Google Scholar 

  7. G. Murtaza, A. Sajid, M. Rizwan, Y. Takagiwa, H. Khachai, M. Jibran, R. Khenata, and S. B. Omran, Mater. Sci. Semicond. Process 40, 429 (2015).

    Article  Google Scholar 

  8. R. Varma, S. Kada, and M. Barnett, J. Magnes Alloys (2020, in press).

  9. Y. Zhu, Z. Han, F. Jiang, E. Dong, B. P. Zhang, W. Zhang, and W. Liu, Mater. Today Phys. 16, 100327 (2020).

    Article  Google Scholar 

  10. G. Castillo-Hernandez, M. Yasseri, B. Klobes, S. Ayachi, E. Müller, and J. de Boor, J. Alloys Compd. 845, 156205 (2020).

    Article  Google Scholar 

  11. H. T. Chen and Z. Z. Shi, Mater. Lett. 281, 128648 (2020).

    Article  Google Scholar 

  12. A. A. Nayeb-Hashemi and J. B. Clark, Bull. Alloy Phase Diagrams 5, 466 (1984).

    Article  Google Scholar 

  13. M. Iida, T. Nakamura, K. Fujimoto, Y. Yamaguchi, R. Tamura, T. Iida, and K. Nishio, MRS Adv. 60, 3971 (2016).

    Article  Google Scholar 

  14. M. Akasaka, T. Lida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 13703 (2008).

    Article  ADS  Google Scholar 

  15. A. Vantomme, J. E. Mahan, G. L. James, P. B. Margriet, V. Bael, K. Temst, and C. V. Haesendonck, Appl. Phys. Lett. 70, 1086 (1997).

    Article  ADS  Google Scholar 

  16. P. Cannon and E. T. Conlin, Science (Washington, DC, U. S.) 145, 487 (1964).

    Article  ADS  Google Scholar 

  17. F. Yu, J.-X. Sun, and T.-H. Chen, Phys. B (Amsterdam, Neth.) 406, 1789 (2011).

  18. M. Guezlane. H. Baaziz, Z. Charifi, A. Belgacem-Bouzida, and Y. Djaballah, J. Sci. Adv. Mater. Dev. 2, 105 (2017).

    Google Scholar 

  19. T. D. Huan, V. N. Tuoc, N. B. Le, N. V. Minh, and L. M. Woods, Phys. Rev. B 93, 094109 (2016).

    Article  ADS  Google Scholar 

  20. Yu. V. Lunyakov, Phys. Solid State 62, 880 (2020).

    Article  ADS  Google Scholar 

  21. . Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, Sh. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013)

    Article  ADS  Google Scholar 

  22. C. W. Glass, A. R. Oganov, and N. Hansen, Comp. Phys. Commun. 175, 713 (2006).

    Article  ADS  Google Scholar 

  23. A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, Comput. Phys. Commun. 184, 1172 (2013).

    Article  ADS  Google Scholar 

  24. A. R. Oganov, Y. M. Ma, Y. Xu, I. Errea, A. Bergara, and A. O. Lyakhov, Proc. Natl. Acad. Sci. U. S. A. 107, 7646 (2010).

    Article  ADS  Google Scholar 

  25. A. R. Oganov, A. O. Lyakhov, and M. Valle, Acc. Chem. Res. 44, 227 (2011).

    Article  Google Scholar 

  26. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  27. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the program of fundamental studies “Far East” of Far-Eastern Branch of the Russian Academy of Sciences (project no. 18-3-022) in the framework of state task no. 0262-2019-0002, using the equipment of the Collective Use Center “Far-Eastern Computational Resource,” www.cc.dvo.ru.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Lunyakov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunyakov, Y.V. Mg2Sn Stannide under Pressure: First-Principles Evolutionary Search Results. Phys. Solid State 63, 590–594 (2021). https://doi.org/10.1134/S1063783421040144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421040144

Keywords:

Navigation