Skip to main content
Log in

Magneto-Optical Properties and Photoluminescence of (PrDy)(FeCo)B Microwires

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Microwires (PrDy)(FeCo)B, containing no iron inclusions and nuclei, are obtained by extraction from a drop of (PrDy)(FeCo)B melt at a reduced cooling rate. Inclusions of the crystalline phases (PrDy)2(CoFe)14B, the magnetic Laves phase Dy(FeCo)2, and inclusions of the Pr2O3 and Dy2O3 phases luminescent under the action of ultraviolet radiation were identified in the volume of the microwires. The distributions of the transverse and longitudinal components of the magnetization along the microwire were obtained for different directions of the external magnetic field using a magneto-optical indicator film and the magneto-optical Kerr effect. In microwires with a width of less than 70 μm, the longitudinal external field causes a modulation of the transverse magnetization corresponding to the formation of cylindrical domains. The co-existence of longitudinal and radial magnetizations was detected by changing the incidence angle and the wavelength of the Kerr microscope. No surface radial domains were found in the wider microwires with a width of ~150 μm. Photoluminescence of inclusions of Pr2O3 and Dy2O3 oxides, which were present both on the surface and in the bulk of the microwire, was detected upon exposure to ultraviolet radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. K. Moon, D. Kim, C. Kim, D. Kim, S. Choe, and C. Hwang, J. Phys. D 50, 125003 (2017).

    Article  Google Scholar 

  2. P. Corte-León, J. M. Blanco, V. Zhukova, M. Ipatov, J. Gonzalez, M. Churyukanova, S. Taskaev, and A. Zhukov, Sci. Rep. 9, 12427 (2019).

    Article  Google Scholar 

  3. R. Varga, A. Zhukov, J. M. Blanco, V. Zhukova, M. Ipatov, J. Gonzalez, and V. Vojtaník, Phys. Rev. B 74, 212405 (2006).

    Article  Google Scholar 

  4. V. Zhukova, P. Corte-Leon, M. Ipatov, J. M. Blanco, L. Gonzalez-Legarreta, and A. Zhukov, Sensors 19, 4767 (2019).

    Article  Google Scholar 

  5. H. Peng, F. Qin, and M. Phan, Ferromagnetic Microwire Composites, Engineering Materials and Processes (Springer, Basel, 2016).

    Book  Google Scholar 

  6. S. V. Shcherbinin, S. O. Volchkov, A. A. Chlenova, and G. V. Kurlyandskaya, Key Eng. Mater. 826, 19 (2019).

    Article  Google Scholar 

  7. T. Henighan, A. Chen, G. Vieira, A. J. Hauser, F. Y. Yang, J. J. Chalmers, and R. Sooryakumar, Biophys. J. 98, 412 (2010).

    Article  Google Scholar 

  8. P. Kollmannsberger and B. Fabry, Rev. Sci. Instrum. 78, 114301 (2007).

    Article  Google Scholar 

  9. M. Vazquez, Magnetic Nano- and Microwires, Design, Synthesis, Properties and Applications (Woodhead, Cambridge, 2015).

    Google Scholar 

  10. M. Vazquez, C. Gomez-Polo, D.-X. Chen, and A. Hernando, IEEE Trans. Magn. 30, 907 (1994).

    Article  Google Scholar 

  11. M. Vazquez and A. Hernando, J. Phys. D 29, 939 (1996).

    Article  Google Scholar 

  12. D. Sander, S. O. Valenzuela, D. Makarov, C. H. Marrows, E. E. Fullerton, P. Fischer, J. McCord, P. Vavassori, S. Mangin, P. Pirro, B. Hillebrands, A. D. Kent, T. Jungwirth, O. Gutfleisch, C. G. Kim, and A. Berger, J. Phys. D 50, 363001 (2017).

    Article  Google Scholar 

  13. P. Rinklin, H. Krause, and B. Wolfrum, Lab. Chip. 16, 4749 (2016).

    Article  Google Scholar 

  14. M. Vázquez, M. Hernández-Vélez, A. Asenjo, D. Navas, K. Pirota, V. Prida, O. Sánchez, and J. L. Baldonedo, Phys. B (Amsterdam, Neth.) 384, 36 (2006).

  15. A. S. Antonov, N. A. Buznikov, A. L. D’yachkov, A. A. Rakhmanov, V. V. Samsonova, and T. A. Furmanova, J. Commun. Techn. Electron. 54, 1315 (2009).

    Article  Google Scholar 

  16. A. Zhukov, V. Zhukova, J. M. Blanco, A. F. Cobeño, M. Vazquez, and J. Gonzalez, J. Magn. Magn. Mater. 258–259, 151 (2003).

    Article  Google Scholar 

  17. R. B. Morgunov, O. V. Koplak, V. P. Piskorskii, D. V. Korolev, R. A. Valeev, and A. D. Talantsev, J. Magn. Magn. Mater. 497, 16604 (2019).

    Google Scholar 

  18. O. V. Koplak, E. V. Dvoretskaya, K. S. Kravchuk, A. S. Useinov, D. V. Korolev, R. A. Valeev, V. P. Piskorskii, O. S. Dmitriev, and R. B. Morgunov, Phys. Solid State 62 (12), 2272 (2020).

  19. Yu. Kabanov, A. Zhukov, V. Zhukova, and G. Gonzalez, Appl. Phys. Lett. 87, 142507 (2005).

    Article  Google Scholar 

  20. Y. Henry, K. Ounadjela, L. Piraux, S. Dubois, J. M. George, and J. L. Duvail, Eur. Phys. J. B 20, 35 (2001).

    Article  Google Scholar 

  21. R. Varga, K. L. García, M. Vázquez, A. Zhukov, and P. Vojtanik, Phys. Rev. B 70, 024402 (2004).

    Article  Google Scholar 

  22. J. Yamasaki, F. B. Humphrey, K. Mohri, H. Kawamura, H. Takamure, and R. Mälmhäll, J. Appl. Phys. 63, 3949 (1988).

    Article  Google Scholar 

  23. D. J. Sellmyer and S. Nafis, J. Magn. Magn. Mater. 54–57, 1173 (1986).

    Google Scholar 

  24. J. McCord, J. Phys. D 48, 333001 (2015).

    Article  Google Scholar 

  25. K. Richter, A. Thiaville, and R. Varga, Phys. Rev. B 96, 064421 (2017).

    Article  Google Scholar 

  26. Y. Oshiai, S. Hashimoto, and K. Aso, Jpn. J. Appl. Phys. 28, L1824 (1989).

    Article  Google Scholar 

  27. C. Mugonia, C. Gattob, A. Pla-Dalmauc, and C. Siligardia, J. Non-Cryst. Solids 471, 295 (2017).

    Article  Google Scholar 

  28. X. M. Zang, D. S. Li, E. Y. B. Pun, and H. Lin, Opt. Mater. Express 7, 2040 (2017).

    Article  Google Scholar 

  29. H. Takashima, K. Ueda, and M. Itoh, Appl. Phys. Lett. 89, 261915 (2006).

    Article  Google Scholar 

  30. E. N. Kablov, O. G. Ospennikova, E. I. Kunitsyna, V. P. Piskorskii, D. V. Korolev, and R. B. Morgunov, Arch. Met. Mater. 62, 1923 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A. D. Talantsev for his help in obtaining data on the Kerr microscope.

Funding

The work was supported by the Russian Foundation for Basic Research in the framework of the Stability program, project no. 20-32-70025, and the grant of the President of the Russian Federation for leading scientific schools, project no. 2644.2020.2. The work was carried out within the framework of the topic no. AAAA-A19-119111390022-2 of the state assignment of the IPHF RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. B. Morgunov.

Ethics declarations

The authors state that they have no conflicts of interest.

Additional information

Translated by V. A. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, D.V., Dvoretskaya, E.V., Koplak, O.V. et al. Magneto-Optical Properties and Photoluminescence of (PrDy)(FeCo)B Microwires. Phys. Solid State 63, 556–565 (2021). https://doi.org/10.1134/S1063783421040107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421040107

Keywords:

Navigation