Skip to main content
Log in

Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Electrical and dielectric properties of polycrystalline yttrium–iron garnet samples grown by the technology of radiation-thermal sintering in the fast electron beam are considered. In the frequency range from 25 Hz to 1 MHz, the normal complex permittivity, dielectric loss tangent, and ac conductivity spectra are measured. For comparison, in addition to frequency measurements, dc resistivity is measured. The temperature dependences of the above parameters are also measured at frequencies of 1 and 100 kHz in the temperature range of 25–300°C. The activation energies of the ac and dc conduction processes on the Arrhenius coordinates are determined by the temperature dependences of the conductivity. It is shown that as the sintering temperature increases from 1300 to 1450°C, the electrical parameters reach values characteristic of samples grown by conventional ceramic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. J. J. Mallmann, A. S. B. Sombra, J. C. Goes, and P. B. A. Fechine, Solid State Phenom. 202, 65 (2013).

    Article  Google Scholar 

  2. E. A. Vasendina, E. N. Lysenko, V. A. Vlasov, A. N. Sokolovskii, A. P. Surzhikov, and A. M. Pritulov, Tekh. Tekhnol. Silikatov, No. 4, 6 (2011).

    Google Scholar 

  3. E. P. Naiden, R. V. Minin, V. I. Itin, and V. A. Zhuravlev, Izv. Vyssh. Uchebn. Zaved. 56, 63 (2013).

    Google Scholar 

  4. A. N. Pashkov, V. G. Kostishin, I. M. Isaev, A. S. Komlev, S. V. Shcherbakov, A. G. Nalogin, A. A. Alekseev, E. A. Belokon’, A. A. Bryazgin, M. V. Korobeinikov, M. A. Mikhailenko, and A. V. Timofeev, in Proceedings of the 24th International Conference on Electromagnetic Field and Materials (Fundamental Physical Studies) (Infra-M, Moscow, 2016), p. 409.

  5. V. G. Kostishin, V. V. Korovushkin, L. V. Panina, V. G. Andreev, A. S. Komlev, N. A. Yudanov, A. Yu. Adamtsov, and A. N. Nikolaev, Inorg. Mater. 50, 1252 (2014).

    Article  Google Scholar 

  6. V. G. Kostishin, V. G. Andreev, V. V. Korovushkin, D. N. Chitanov, N. A. Yudanov, A. T. Morchenko, A. S. Komlev, A. Yu. Adamtsov, and A. N. Nikolaev, Inorg. Mater. 50, 1317 (2014).

    Article  Google Scholar 

  7. W. F. F. Wan Ali, N. S. Abdullah, M. Kamarudin, M. F. Ain, and Z. A. Ahmad, Ceram. Int. 42, 13996 (2016).

    Article  Google Scholar 

  8. S. H. Vajargah, H. R. M. Hosseini, and Z. A. Nemati, Mater. Sci. Eng. B 129, 211 (2006).

    Article  Google Scholar 

  9. S. D. Figueiro, E. J. J. Mallmann, J. C. Góes, N. M. P. S. Ricardo, J. C. Denardin, A. S. B. Sombra, and P. B. A. Fechine, Exp. Polym. Lett. 4, 790 (2010).

    Article  Google Scholar 

  10. V. Sharma, J. Saha, S. Patnaik, and B. K. Kuanr, J. Magn. Magn. Mater. 439, 277 (2017).

    Article  ADS  Google Scholar 

  11. F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2003).

    Book  Google Scholar 

  12. G. I. Skanavi, Dielectric Polarization and Loss in Glasses and Ceramic Materials with High Dielectric Constant (Gos. Energ. Izdat., Moscow, Leningrad, 1952) [in Russian].

    Google Scholar 

  13. V. G. Kostishin, V. V. Korovushkin, A. G. Nalogin, S. V. Shcherbakov, I. M. Isaev, A. A. Alekseev, A. Yu. Mironovich, and D. V. Salogub, Phys. Solid State 62, 1156 (2020).

    Article  ADS  Google Scholar 

  14. V. G. Kostishin, A. G. Nalogin, S. V. Shcherbakov, M. P. Mezentseva, M. A. Mikhailenko, M. V. Korobeinikov, D. V. Salogub, and A. A. Bryazgin, Izv. Yu.‑Zap. Univ., Ser. Tekh. Tekhnol., No. 8, 124 (2018).

  15. V. G. Kostishin, A. G. Nalogin, S. V. Shcherbakov, M. P. Mezentseva, M. A. Mikhailenko, M. V. Korobeinikov, A. A. Bryazgin, and K. V. Kapranova, Izv. Yu.-Zap. Univ., Ser. Tekh. Tekhnol., No. 7, 128 (2017).

  16. K. H. J. Buschow, Handbook of Magnetic Materials, 1st ed. (Elsevier, Amsterdam, 2015).

    Google Scholar 

  17. T. L. Chelidze, A. I. Derevyanko, and O. D. Kurilenko, Electrical Spectroscopy of Heterogeneous Systems (Nauk. Dumka, Kiev, 1977) [in Russian].

    Google Scholar 

  18. Advanced Nanotechnologies for Detection and Defence against CBRN Agents, Ed. by P. Petkov, D. Tsiulyanu, C. Popov, and W. Kulisch, NATO Science for Peace and Security, Ser. B: Physics and Biophysics (Springer, Dordrecht, 2018), p. 165.

Download references

Funding

This study was supported by the Russian Science Foundation (agreement no. 19-19-00694, May 6, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kostishin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostishin, V.G., Shakirzyanov, R.I., Nalogin, A.G. et al. Electrical and Dielectric Properties of Yttrium–Iron Ferrite Garnet Polycrystals Grown by the Radiation–Thermal Sintering Technology. Phys. Solid State 63, 435–441 (2021). https://doi.org/10.1134/S1063783421030094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421030094

Keywords:

Navigation