Skip to main content
Log in

Stabilization of Martensite on Nanoprecipitates and Kinetics of Explosive Martensite Transition

  • MECHANICAL PROPERTIES, PHYSICS OF STRENGTH, AND PLASTICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Based on the theory of diffuse martensitic transitions (DMT), the physical mechanism of the influence of dispersed precipitate nanoparticles on the appearance of such features of the deformation behavior of alloys with the shape memory effect (SME) as the stabilization of martensite at temperatures significantly higher than the As and Af temperatures characteristic of an alloy in the absence of nanoparticles c-oherent with the matrix is analyzed. The reason for the stabilization of martensite is the internal elastic stress fields associated with the particles, which serve as sites for the heterogeneous nucleation of martensite. It has been shown theoretically that, with an increase in the volume concentration of nanoparticles, the recovery of shape memory deformation occupies an increasingly narrow temperature range and occurs at an ever higher temperature. After reaching a certain critical value of the particle concentration, the return of the deformation of SM loses its stability and becomes explosive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C. Picornel, J. Pons, and E. Ceresary, Acta Mater. 49, 4221 (2001).

    Article  ADS  Google Scholar 

  2. V. Recarte, J. I. Pérez-Landazábal, P. P. Rodríguez, E. H. Bocanegra, M. L. Nó, and J. San Juan, Acta Mater. 52, 3941 (2004).

    Article  ADS  Google Scholar 

  3. V. I. Nikolaev, P. N. Yakushev, G. A. Malygin, and S. A. Pul’nev, Tech. Phys. Lett. 36, 914 (2010).

    Article  ADS  Google Scholar 

  4. V. I. Nikolaev, G. A. Malygin, S. A. Pulnev, P. N. Yakushev, and V. M. Egorov, Mater. Sci. Forum 738–739, 51 (2013).

    Article  Google Scholar 

  5. V. I. Nikolaev, P. N. Yakushev, G. A. Malygin, A. I. Averkin, A. V. Chikiryaka, and S. A. Pul’nev, Tech. Phys. Lett. 40, 123 (2014).

    Article  ADS  Google Scholar 

  6. Sh. Yang, T. Omori, C. Wang, Y. Liu, M. Nagasako, J. Ruan, R. Kainuma, and K. Liu, Sci. Rep. 6, 21754 (2016).

    Article  ADS  Google Scholar 

  7. X. M. He, L. J. Rong, Zh. Liang, and Y. Li, J. Mater. Sci. 40, 5311 (2005).

    Article  ADS  Google Scholar 

  8. M. Wang, M. Jiang, G. Liao, Sh. Guo, and X. Zhao, Progr. Nat. Sci. 22, 130 (2012).

    Article  Google Scholar 

  9. C. Picornel, J. Pons, A. Paulsen, J. Frenzel, V. Kaminskii, K. Sapozhnikov, J. van Humbeeck, and S. Kustov, Scr. Mater. 180, 23 (2020).

    Article  Google Scholar 

  10. V. I. Nikolaev, S. I. Stepanov, P. N. Yakushev, V. M. Krymov, and S. B. Kustov, Intermetallics 119, 106709 (2020).

    Article  Google Scholar 

  11. F. Xiao, M. Jin, J. Liu, and X. Jin, Acta Mater. 96, 292 (2015).

    Article  ADS  Google Scholar 

  12. D. Zhao, F. Xiao, F. Nie, D. Cong, W. Sun, and J. Liu, Scr. Mater. 149, 6 (2018).

    Article  Google Scholar 

  13. P. Czaja, R. Chulist, T. Tokarsky, T. Czeppe, Y. I. Chumlyakov, and E. Cesari, J. Mater. Sci. 53, 10383 (2018).

    Article  ADS  Google Scholar 

  14. G. A. Malygin, V. I. Nikolaev, A. I. Averin, and A. P. Zograf, Phys. Solid State 58, 2488 (2016).

    Article  ADS  Google Scholar 

  15. G. A. Malygin, V. I. Nikolaev, I. M. Krymov, S. A. Pul’nev, and S. I. Stepanov, Tech. Phys. 64, 819 (2019).

    Article  Google Scholar 

  16. G. A. Malygin, Phys. Solid State 45, 1566 (2003).

    Article  ADS  Google Scholar 

  17. Sh. Yang, Y. Liu, C. Wang, and X. Liu, Acta Mater. 60, 4255 (2012).

    Article  ADS  Google Scholar 

  18. Y. Wu, J. Wang, Ch. Jiang, and H. Xu, Intermetallics 97, 42 (2018).

    Article  Google Scholar 

  19. A. Ibarra, D. Caillard, J. San Juan, and M. L. Nó, Appl. Phys. Lett. 90, 101907 (2007).

    Article  ADS  Google Scholar 

  20. G. A. Malygin, Phys. Solid State 45, 345 (2003).

    Article  ADS  Google Scholar 

  21. J. López-García, I. Unzueta, V. Sánchez-Alarcos, V. Recarte, et al., Intermetallics 94, 133 (2018).

    Article  Google Scholar 

  22. G. A. Malygin, Phys. Solid State 61, 1251 (2019).

    Article  ADS  Google Scholar 

  23. G. A. Malygin, Phys. Usp. 44, 173 (2001).

    Article  ADS  Google Scholar 

  24. G. A. Malygin, Phys. Solid State 61, 149 (2019).

    Article  ADS  Google Scholar 

  25. N. Nishida and T. Honma, Scr. Mater. 18, 1293 (1984).

    Google Scholar 

  26. V. J. Zeldovich, G. A. Sobyanina, and V. G. Pushin, Scr. Mater. 37, 79 (1997).

    Article  Google Scholar 

  27. J. D. Eshelby, in Progress in Solid State Physics, Ed. by F. Seitz and D. Turnbull (Academic, New York, 1956), Vol. 3, p. 79.

    Google Scholar 

  28. D. Y. Li and L. Q. Chen, Acta Mater. 45, 471 (1997).

    Article  ADS  Google Scholar 

  29. G. A. Malygin, Phys. Solid State 61, 2083 (2019).

    Article  ADS  Google Scholar 

  30. Y. Wu, J. Wang, C. Jiang, and H. Xu, Intermetallics 97, 42 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Malygin.

Ethics declarations

The author declare that they have no conflicts of interests.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malygin, G.A. Stabilization of Martensite on Nanoprecipitates and Kinetics of Explosive Martensite Transition. Phys. Solid State 63, 94–100 (2021). https://doi.org/10.1134/S1063783421010157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010157

Keywords:

Navigation