Skip to main content
Log in

Nanoindentation and Mechanical Properties of Materials at Submicro- and Nanoscale Levels: Recent Results and Achievements

  • REVIEWS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The review is dedicated to characteristics of the mechanical behavior of various materials at submicro- and nanoscale levels. To a large extent, progress in this area is determined by the development of a large family of methods for precision force nanotesting, which have been referred to as “nanoindentation”. However, nanomechanical properties are studied to date not only and not so much by nanoindentation methods in narrow sense, i.e., the methods of local deformation of macro-, micro-, and nanoscale objects. Force nanomechanical testing is interpreted more broadly and includes the application of small forces to the test object and the precise measurements of deformation with nanometer resolution under uniaxial compression, tension, bending, shear, and torsion by various methods with simultaneous in situ registration of their microstructural parameters by electron microscopy and X-ray diffraction methods. The main research directions developed in the last decade to improve experimental approaches and the results on single-, micro-, and nanocrystalline materials, composites, films, and coatings obtained by means of these approaches in amorphous solids and biomaterials (tissues, living cells, and macromolecules) are described. Particular attention is paid to size effects and atomic deformation/fracture mechanisms at the nanoscale. This review is a natural continuation and development of the author’s review published in Phys. Solid State, vol. 50, issue 12, p. 2113 (2008), in which the specifics of the nanomechanical properties of solids are analyzed, and describes both the basic concepts of nanomechanical testing of materials and the latest advances in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.

Similar content being viewed by others

REFERENCES

  1. P. Grodzinski, Plastics 18, 312 (1953).

    Google Scholar 

  2. A. P. Ternovskii, V. P. Alekhin, M. Kh. Shorshorov, M. M. Khrushchev, and V. N. Skvortsov, Zavod. Lab. 39, 1242 (1973).

    Google Scholar 

  3. S. I. Bulychev and V. P. Alekhin, Testing of Materials by Continuous Depression of an Indenter (Mashinostroenie, Moscow, 1990) [in Russian].

    Google Scholar 

  4. Yu. I. Golovin, Nanoindentation and its Possibilities (Mashinostroenie, Moscow, 2009).

    Google Scholar 

  5. A. C. Fischer-Cripps, Nanoindentation (Springer, New York, 2011).

    Book  Google Scholar 

  6. Springer Handbook of Nanotechnology, Ed. by and B. Bhushan, 4nd ed. (Springer, Berlin, 2017).

  7. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  ADS  Google Scholar 

  8. G. M. Pharr, Mater. Sci. Eng. A 253, 151 (1998).

    Article  Google Scholar 

  9. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  ADS  Google Scholar 

  10. ISO group TC 164/SC 3/WG1 and ASTM E28.06.11. ISO/DIS 14577-1, 2, 3.

  11. GOST (State Standard) No. R 8.748-2011. State system for ensuring the uniformity of measurement. Metals and alloys. Measurement of hardness and other characteristics of materials during instrumental indentation. Part 1. Test method.

  12. Nanotribology and Nanomechanics. An Introduction, Ed. by B. Bhushan, 2nd ed. (Springer, Berlin, 2008).

    Google Scholar 

  13. Handbook of Nanoindentation with Biological Applications, Ed. by M. L. Oyen (Pan Stanford, Singapore, 2011).

    Google Scholar 

  14. Nanoindentation in Materials Science, Ed. by J. Ne-mecek (InTech, London, 2012).

    Google Scholar 

  15. Nanomechanical Analysis of High Performance Materials, Ed. by A. Tiwari (Springer, Heidelberg, 2014).

  16. Materials Characterization: Modern Methods and Applications, Ed. by N. M. Ranganathan (CRC, Boca Raton, FL, 2015).

    Google Scholar 

  17. Applied Nanoindentation in Advanced Materials, Ed. by A. Tiwari and S. Natarajan (Wiley, New York, 2017).

    Google Scholar 

  18. H. Wang, L. Zhu, and B. Hu, Residual Stresses and Nanoindentation Testing of Films and Coatings (Springer Nature, Singapore; Science Press, Beijing, 2018).

  19. Handbook of Mechanics of Materials, Ed. by C.‑H. Hsueh, S. Schmauder, C.-S. Chen, and K. K. Chawla (Springer Nature, Singapore, 2019).

    Google Scholar 

  20. W. C. Oliver and G. M. Pharr, MRS Bull. 35, 897 (2010).

    Article  Google Scholar 

  21. P.-E. Mazeran, M. Beyaoui, M. Bigerelle, and M. Guigon, Int. J. Mater. Res. 103, 715 (2012).

    Article  Google Scholar 

  22. G. Guillonneau, G. Kermouche, S. Bec, and J.‑L. Loubet, J. Mater. Res. 27, 19 (2012).

    Article  Google Scholar 

  23. G. Dehm, B. N. Jaya, R. Raghavan, and C. Kirchlechner, Acta Mater. 142, 248 (2018).

    Article  ADS  Google Scholar 

  24. H. Lee, W. Y. Huen, V. Vimonsatit, and P. Mendis, Sci. Rep. 9, 13189 (2019).

    Article  ADS  Google Scholar 

  25. A. Barnoush, P. Hosemann, J. Molina-Aldareguia, and J. M. Wheeler, Mater. Today 14, 471 (2019).

    Google Scholar 

  26. X. Xiao and L. Yu, Nucl. Mater. Energy 22, 100721 (2020).

    Article  Google Scholar 

  27. Yu. I. Golovin, V. I. Ivolgin, V. V. Korenkov, N. V. Korenkova, and R. I. Ryabko, Kondens. Sredy Mezhfazn. Granitsy 3, 122 (2001).

    Google Scholar 

  28. Yu. I. Golovin, Phys. Solid State 50, 2205 (2008).

    Article  ADS  Google Scholar 

  29. Yu. I. Golovin, Zavod. Lab. 75, 45 (2009).

    Google Scholar 

  30. X. Li and B. Bhushan, Mater. Characteriz. 48, 11 (2002).

    Article  Google Scholar 

  31. K. P. Menard, Dynamic Mechanical Analysis. A Practical Introduction, 2nd ed. (CRC, Boca Raton, London, New York, 2008).

    Book  Google Scholar 

  32. M. S. Blanter, I. S. Golovin, H. Neuhauser, and H.‑R. Sinning, Internal Friction in Metallic Materials. A Handbook (Springer, Berlin, 2007).

    Book  Google Scholar 

  33. A. Leitner, V. Maier-Kiener, and D. Kiener, Mater. Res. Lett. 5, 486 (2017).

    Article  Google Scholar 

  34. Yu. I. Golovin, V. V. Korenkov, and S. S. Razlivalova, Bull. Russ. Acad. Sci.: Phys. 82, 1180 (2018).

    Article  Google Scholar 

  35. Yu. I. Golovin, V. V. Korenkov, and S. S. Razlivalova, Phys. Solid State 59, 1127 (2017).

    Article  ADS  Google Scholar 

  36. V. I. Kushch, S. N. Dub, and P. M. Litvin, J. Superhard Mater. 29, 228 (2007).

    Article  Google Scholar 

  37. A. J. Bushby and D. J. Dunstan, J. Mater. Res. 19, 137 (2004).

    Article  ADS  Google Scholar 

  38. Yu. I. Golovin, A. I. Tyurin, V. I. Ivolgin, and V. V. Korenkov, Tech. Phys. 45, 605 (2000).

    Article  Google Scholar 

  39. Y. I. Golovin, A. I. Tyurin, and B. Y. Farber, J. Mater. Sci. 37, 895 (2002).

    Article  ADS  Google Scholar 

  40. Y. I. Golovin, A. I. Tyurin, and B. Y. Farber, Philos. Mag. A 82, 1857 (2002).

    Article  ADS  Google Scholar 

  41. J. C. Múnera, D. Goswami, R. V. Martinez, and E. A. Ossa, Mech. Mater. 148, 103443 (2020).

    Article  Google Scholar 

  42. Yu. I. Golovin, Principles of Nanotechnology (Mashinostroenie, Moscow, 2012) [in Russian].

    Google Scholar 

  43. S. Pathak and S. R. Kalidindi, Mater. Sci. Eng. R 91, 1 (2015).

    Article  Google Scholar 

  44. A. I. Vakis, V. A. Yastrebov, J. Scheibert, L. Nicola, D. Dini, C. Minfray, A. Almqvist, M. Paggi, S. Lee, G. Limbert, J. F. Molinari, G. Anciaux, S. E. Restrepo, A. Papangelo, A. Cammarata, et al., Tribol. Int. 125, 169 (2018).

    Article  Google Scholar 

  45. S. Z. Chavoshi and S. Xu, Prog. Mater. Sci. 100, 1 (2019).

    Article  Google Scholar 

  46. S. B. Vishnubhotla, R. Chen, S. R. Khanal, X. Hu, A. Martini, and T. D. B. Jacobs, Tribol. Lett. 67, 97 (2019).

    Article  Google Scholar 

  47. P. Van-Trung and F. Te-Hua, Comput. Mater. Sci. 174, 109465 (2020).

    Article  Google Scholar 

  48. P. A. Santos-Flórez, C. J. Ruestes, and M. de Koning, J. Phys. Chem. C 124, 9329 (2020).

    Article  Google Scholar 

  49. Yu. I. Golovin, Yu. L. Iunin, and A. I. Tyurin, Dokl. Phys. 48, 505 (2003).

    Article  ADS  Google Scholar 

  50. Yu. I. Golovin, S. N. Dub, V. I. Ivolgin, V. V. Korenkov, and A. I. Tyurin, Phys. Solid State 47, 995 (2005).

    Article  ADS  Google Scholar 

  51. Yu. I. Golovin, A. I. Tyurin, and V. V. Khlebnikov, Deform. Razrush. Mater., No. 9, 32 (2005).

  52. A. Zubelewicz, Crystals 10, 212 (2020).

    Article  Google Scholar 

  53. P. Feldner, B. Merle, and M. Göken, J. Mater. Res. 32, 1466 (2017).

    Article  ADS  Google Scholar 

  54. B. Merle, W. H. Higgins, and G. M. Pharr, J. Mater. Res. 34, 3495 (2019).

    Article  ADS  Google Scholar 

  55. G. Testa, N. Bonora, A. Ruggiero, and G. Iannitti, Metals 10, 120 (2020).

    Article  Google Scholar 

  56. K. T. Ramesh, in Springer Handbook of Experimental Solid Mechanics, Ed. by W. Sharpe (Springer, New York, 2008), p. 874.

    Google Scholar 

  57. Q. Li, in Handbook of Mechanics of Materials, Ed. by C.-H. Hsueh (Springer Nature, Singapore, 2019), Chap. 27, p. 845.

    Google Scholar 

  58. Yu. I. Golovin and A. I. Tyurin, Crystallogr. Rep. 40, 818 (1995).

    ADS  Google Scholar 

  59. Yu. I. Golovin and A. I. Tyurin, Phys. Solid State 38, 1000 (1996).

    ADS  Google Scholar 

  60. Y. I. Golovin, V. I. Ivolgin, V. V. Korenkov, A. I. Tyurin, and B. Y. Farber, Mater. Sci. Forum 386, 141 (2002).

    Article  Google Scholar 

  61. Yu. I. Golovin, A. I. Tyurin, and V. V. Khlebnikov, Tech. Phys. 50, 479 (2005).

    Article  Google Scholar 

  62. J. M. Wheeler, J. Dean, and T. W. Clyne, Extreme Mech. Lett. 26, 35 (2018).

    Article  Google Scholar 

  63. M. Rueda-Ruiza, B. D. Beake, and J. M. Molina-Aldareguia, Mater. Des. 192, 108715 (2020).

    Article  Google Scholar 

  64. C. Zehnder, J.-N. Peltzer, J. S. K.-L. Gibson, and S. Korte-Kerzel, Mater. Des. 151, 17 (2018).

    Article  Google Scholar 

  65. P. S. Phani and W. C. Oliver, Materials 10, 663 (2017).

    Article  ADS  Google Scholar 

  66. A. S. Khan and S. Huang, Int. J. Plast. 8, 397 (1992).

    Article  Google Scholar 

  67. Y. Liu, J. Hay, H. Wang, and X. Zhang, Scr. Mater. 77, 5 (2014).

    Article  Google Scholar 

  68. B. D. Beake, L. Isern, A. J. Harris, and J. L. Endrino, Mater. Manuf. Proc. 35, 836 (2020).

    Article  Google Scholar 

  69. Y. X. Wang and S. Zhang, Surf. Coat. Technol. 258, 1 (2014).

    Article  Google Scholar 

  70. K.-D. Bouzakis, P. Charalampous, G. Skordaris, F. Dimofte, N. M. Ene, R. Ehinger, S. Gardner, B. S. Modrzejewski, and J. R. Fetty, Surf. Coat. Technol. 275, 207 (2015).

    Article  Google Scholar 

  71. B. D. Beakea, T. W. Liskiewicz, A. Birda, and X. Shib, Tribol. Int. 149, 105732 (2020).

    Article  Google Scholar 

  72. B. Merle, W. H. Higgins, and G. M. Pharr, J. Mater. Res. 35, 343 (2020).

    Article  ADS  Google Scholar 

  73. S. Breumier, S. Sao-Joao, A. Villani, M. Lévesque, and G. Kermouche, Mater. Des. 193, 108789 (2020).

    Article  Google Scholar 

  74. G. Guillonneau, M. Mieszala, J. Wehrs, J. Schwiedrzik, S. Grop, D. Frey, L. Philippe, J.-M. Breguet, J. Michler, and J. M. Wheeler, Mater. Des. 148, 39 (2018).

    Article  Google Scholar 

  75. R. Gümrük, R. A. W. Mines, and S. Karadeniz, J. Mater. Eng. Perform. 27, 1016 (2018).

    Article  Google Scholar 

  76. E. N. Borodin, A. A. Gruzdkov, A. E. Mayer, and N. S. Selyutina, J. Phys.: Conf. Ser. 991, 012012 (2018).

    Google Scholar 

  77. D. Kiener, R. Fritz, M. Alfreider, A. Leitner, R. Pippan, and V. Maier-Kiener, Acta Mater. 166, 687 (2019).

    Article  ADS  Google Scholar 

  78. H. Wang, P. Gao, R. Turner, H. Chen, L. Qi, and B. Yang, Mater. Today Commun. 24, 101040 (2020).

    Article  Google Scholar 

  79. K. Durst and V. Maier, Curr. Opin. Solid State Mater. Sci. 19, 340 (2015).

    Article  ADS  Google Scholar 

  80. V. Maier-Kiener and K. Durst, J. Mater. 69, 2246 (2017).

    Google Scholar 

  81. D.-H. Lee, I.-C. Choi, G. Yang, Z. Lu, M. Kawasaki, U. Ramamurty, R. Schwaiger, and J. Jang, Scr. Mater. 156, 129 (2018).

    Article  Google Scholar 

  82. J. Kappacher, A. Leitner, D. Kiener, H. Clemens, and V. Maier-Kiener, Mater. Des. 189, 108499 (2020).

    Article  Google Scholar 

  83. C. Herring and J. K. Galt, Phys. Rev. 85, 1060 (1952).

    Article  ADS  Google Scholar 

  84. S. S. Brenner, Science (Washington, DC, U. S.) 128, 569 (1958).

    Article  ADS  Google Scholar 

  85. F. R. N. Nabarro and P. I. Jackson, Growth and Perfection of Crystals (Wiley, New York, 1959), p. 11.

    Google Scholar 

  86. E. M. Nadgornyi, Yu. A. Osip’yan, M. D. Perkas, and V. M. Rozenberg, Sov. Phys. Usp. 2, 282 (1959).

    Article  ADS  Google Scholar 

  87. G. V. Berezhkova, Filament Crystals (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  88. S. S. Brenner, J. Appl. Phys. 27, 1484 (1956).

    Article  ADS  Google Scholar 

  89. M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, Science (Washington, DC, U. S.) 305, 986 (2004).

    Article  ADS  Google Scholar 

  90. D. M. Dimiduk, M. D. Uchic, and T. A. Parthasarathy, Acta Mater. 53, 4065 (2005).

    Article  ADS  Google Scholar 

  91. M. D. Uchic, D. M. Dimiduk, R. Wheeler, P. A. Shade, and H. L. Fraser, Scr. Mater. 54, 759 (2006).

    Article  Google Scholar 

  92. Focused Ion Beam Systems: Basics and Applications, Ed. by N. Yao (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  93. Y. Zhu, C. Ke, and H. D. Espinosa, Exp. Mech. 47, 7 (2007).

    Article  Google Scholar 

  94. S. Reyntjens and L. A. Giannuzzi, in Focused Ion Beam Systems: Basics and Applications, Ed. by N. Yao (Cambridge Univ. Press, Cambridge, 2007), Chap. 5.

    Google Scholar 

  95. D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580 (2008).

    Article  ADS  Google Scholar 

  96. S. Korte and W. Clegg, Scr. Mater. 60, 807 (2009).

    Article  Google Scholar 

  97. D. M. Dimiduk, E. M. Nadgorny, C. Woodward, M. D. Uchic, and P. A. Shade, Philos. Mag. 90, 3621 (2010).

    Article  ADS  Google Scholar 

  98. J.-Y. Kim and J. R. Greer, Acta Mater. 57, 5245 (2009).

    Article  ADS  Google Scholar 

  99. D. Kiener, C. Motz, W. Grosinger, D. Weygand, and R. Pippan, Scr. Mater. 63, 500 (2010).

    Article  Google Scholar 

  100. J. Lian, J. Wang, Y.-Y. Kim, and J. Greer, J. Mech. Phys. Solids 57, 812 (2009).

    Article  ADS  Google Scholar 

  101. B. Moser, K. Wasmer, L. Barbieri, and J. Michler, J.Mater. Res. 22, 1004 (2011).

    Article  ADS  Google Scholar 

  102. H. Fei, A. Abraham, N. Chawla, and H. Jiang, J. Appl. Mech. 79, 061011 (2012).

    Article  ADS  Google Scholar 

  103. M. D. Uchic, P. A. Shade, and D. M. Dimiduk, Ann. Rev. Mater. Res. 39, 361 (2009).

    Article  ADS  Google Scholar 

  104. J. R. Greer and J. Th. M. de Hosson, Prog. Mater. Sci. 56, 654 (2011).

    Article  Google Scholar 

  105. R. Maaß, S. van Petegem, D. Mab, J. Zimmermann, D. Grolimund, F. Roters, H. Van Swygenhoven, and D. Raabe, Acta Mater. 57, 5996 (2009).

    Article  ADS  Google Scholar 

  106. H. van Swygenhoven and S. van Petegem, J. Mater. 62, 36 (2010).

    Google Scholar 

  107. A. Bhowmik, J. Lee, T. B. Britton, W. Liu, T.-S. Jun, G. Sernicola, M. Karimpour, D. S. Balint, and F. Giuliani, Acta Mater. 145, 516 (2018).

    Article  ADS  Google Scholar 

  108. J. Zimmermann, S. van Petegem, H. Bei, D. Grolimund, E. P. George, and H. van Swygenhoven, Scr. Mater. 62, 746 (2010).

    Article  Google Scholar 

  109. S. S. Singh and N. Chawla, in Handbook of Mechanics of Materials, Ed. by C.-H. Hsueh (Springer Nature, Singapore, 2019), Chap. 61, p. 2013.

    Google Scholar 

  110. W. Wu, D. Qi, W. Hu, L. Xi, L. Sun, B. Liao, F. Berto, G. Qian, and D. Xiao, Mater. Des. 192, 108743 (2020).

    Article  Google Scholar 

  111. K. Wasmera, T. Wermelinger, A. Bidiville, R. Spolenak, and J. Michler, J. Mater. Res. 23, 3040 (2008).

    Article  ADS  Google Scholar 

  112. K. Babinsky, R. De Kloe, H. Clemens, and S. Primig, Ultramicroscopy 144, 9 (2014).

    Article  Google Scholar 

  113. M. Herbig, P. Choi, and D. Raabe, Ultramicroscopy 153, 32 (2015).

    Article  Google Scholar 

  114. I. Povstugar, J. Weber, D. Naumenko, T. Huang, M. Klinkenberg, and W. J. Quadakkers, Microsc. Microanal. 25, 1 (2019).

    Article  ADS  Google Scholar 

  115. J. Rajagopalan, in Handbook of Mechanics of Materials, Ed. by C.-H. Hsueh, S. Schmauder, C.-S. Chen, and K. K. Chawla (Springer Nature, Singapore, 2019), Chap. 59.

    Google Scholar 

  116. I. M. Robertson, C. A. Schuh, J. S. Vetrano, N. D. Brow-ning, D. P. Field, D. J. Jensen, M. K. Miller, I. Baker, D. C. Dunand, R. Dunin-Borkowski, B. Kabius, T. Kelly, S. Lozano-Perez, A. Misra, G. S. Rohrer, et al., J. Mater. Res. 26, 1341 (2011).

    Article  ADS  Google Scholar 

  117. D. Jang, X. Li, H. Gao, and J. R. Greer, Nat. Nanotechnol. 7, 594 (2012).

    Article  ADS  Google Scholar 

  118. J. Kabel, P. Hosemanna, Y. Zayachuk, D. E. J. Armstrong, T. Koyanagi, Y. Katoh, and C. Deck, J. Mater. Res. 33, 424 (2018).

    Article  ADS  Google Scholar 

  119. Y. Xiao, H. Besharatloo, B. Gan, X. Maeder, R. Spolenak, and J. M. Wheeler, J. Alloys Compd. 822, 153536 (2020).

    Article  Google Scholar 

  120. W.-Z. Han, L. Huang, S. Ogata, H. Kimizuka, Z.‑C. Yang, C. Weinberger, Q.-J. Li, B.-Y. Liu, X.‑X. Zhang, J. Li, E. Ma, and Z.-W. Shan, Adv. Mater. 27, 3385 (2015).

    Article  Google Scholar 

  121. J.-Y. Kim and J. R. Greer, Acta Mater. 58, 2355 (2010).

    Article  ADS  Google Scholar 

  122. C. Q. Chen, Y. T. Pei, and J. T. M. de Hosson, Acta Mater. 58, 189 (2010).

    Article  ADS  Google Scholar 

  123. C. A. Volkert, A. Donohue, and F. Spaepen, J. Appl. Phys. 103, 083539 (2008).

    Article  ADS  Google Scholar 

  124. D. Jang and J. R. Greer, Nat. Mater. 9, 215 (2010).

    Article  ADS  Google Scholar 

  125. D. Jang, D. C. Gross, and J. R. Greer, Int. J. Plasticity 27, 858 (2011).

    Article  Google Scholar 

  126. C.-C. Wang, J. Ding, Y.-Q. Cheng, J.-C. Wan, L. Tian, J. Sun, Z.-W. Shan, J. Li, and E. Ma, Acta Mater. 60, 5370 (2012).

    Article  ADS  Google Scholar 

  127. Y. Xiao, R. Kozak, M. J. R. Hach, W. Steurer, R. Spolenak, J. M. Wheeler, and Y. Zou, Mater. Sci. Eng. A 790, 139429 (2020).

    Article  Google Scholar 

  128. O. T. Abad, J. M. Wheeler, J. Michler, A. S. Schneider, and E. Arzt, Acta Mater. 103, 483 (2016).

    Article  ADS  Google Scholar 

  129. H. Yilmaz, C. J. Williams, J. Risan, and B. Derby, Materialia 7, 100424 (2019).

    Article  Google Scholar 

  130. M. Chen, J. Wehrs, A. S. Sologubenko, J. Rabier, J. Michler, and J. M. Wheeler, Mater. Des. 189, 108506 (2020).

    Article  Google Scholar 

  131. H. Bei, S. Shim, M. K. Miller, G. M. Pharr, and E. P. George, Appl. Phys. Lett. 91, 111915 (2007).

    Article  ADS  Google Scholar 

  132. D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm, Mater. Sci. Eng. A 459, 262 (2007).

    Article  Google Scholar 

  133. S. Shim, H. Bei, M. K. Miller, G. M. Pharr, and E. P. George, Acta Mater. 57, 503 (2009).

    Article  ADS  Google Scholar 

  134. E. Salvati, L. R. Brandt, C. Papadaki, H. Zhang, S. M. Mousavi, D. Wermeille, and A. M. Korsunsky, Mater. Lett. 213, 346 (2018).

    Article  Google Scholar 

  135. J. Wehrs, G. Mohanty, G. Guillonneau, A. A. Taylor, X. Maeder, D. Frey, L. Philippe, S. Mischler, J. M. Wheeler, and J. Michler, J. Mater. 67, 1684 (2015).

    Google Scholar 

  136. M. Zamanzade, J. R. Velayarce, O. T. Abad, C. Motz, and A. Barnoush, Mater. Sci. Eng. A 652, 370 (2016).

    Article  Google Scholar 

  137. J. Shin, G. Richter, and D. S. Gianola, Mater. Des. 189, 108460 (2020).

    Article  Google Scholar 

  138. M. J. Pfeifenberger, M. Mangang, S. Wurster, J. Reiser, A. Hohenwarter, W. Pfleging, D. Kiener, and R. Pippan, Mater. Des. 121, 109 (2017).

    Article  Google Scholar 

  139. L. Wang, J. Teng, X. Sha, J. Zou, Z. Zhang, and X. Han, Nano Lett. 17, 4733 (2017).

    Article  ADS  Google Scholar 

  140. S.-Y. Chang, in Handbook of Mechanics of Materials, Ed. by C. Y. Hsueh (Springer, Singapore, 2018), p. 1.

    Google Scholar 

  141. J. P. Wharry, K. H. Yano, and P. V. Patki, Scr. Mater. 162, 63 (2019).

    Article  Google Scholar 

  142. M. Bagheripoor and R. Klassen, Rev. Adv. Mater. Sci. 56, 21 (2018).

    Article  Google Scholar 

  143. B. Skrotzki, J. Olbricht, and H.-J. Kühn, in Handbook of Mechanics of Materials, Ed. by C.-H. Hsueh (Springer Nature, Singapore, 2019), Chap. 58.

    Google Scholar 

  144. B. Lucas and W. Oliver, MRS Proc. 356, 645 (1994).

  145. W. Poisl, W. Oliver, and B. Fabes, J. Mater. Res. 10, 2024 (1995).

    Article  ADS  Google Scholar 

  146. T. Suzuki, T. Ohmura, S. S. Asif, and J. Pethica, J. Adhesion 67, 153 (1998).

    Article  Google Scholar 

  147. B. K. Arjun and J. Pfetzing-Micklich. Technical report (2017). https://doi.org/10.13140/RG.2.2.19545.42088

  148. M. A. Monclús and J. M. Molina-Aldareguia, in Hand-book of Mechanics of Materials, Ed. by C.-H. Hsueh (Springer Nature, Singapore, 2019), Chap. 68, p. 2219.

    Google Scholar 

  149. I.-C. Choi, C. Brandl, and R. Schwaiger, Acta Mater. 140, 107 (2017).

    Article  ADS  Google Scholar 

  150. J. M. Wheeler, D. E. J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 19, 354 (2015).

    Article  ADS  Google Scholar 

  151. A. J. Harris, B. D. Beake, D. E. J. Armstrong, and M. I. Davies, Exp. Mech. 57, 1115 (2017).

    Article  Google Scholar 

  152. T. F. Zhang, Z. X. Wan, J. C. Ding, S. Zhang, Q. M. Wang, and K. H. Kim, Appl. Surf. Sci. 435, 963 (2018).

    Article  ADS  Google Scholar 

  153. S. Z. Chavoshi and S. Xu, J. Mater. Eng. Perform. 27, 3844 (2018).

    Article  Google Scholar 

  154. C. Minnert, W. C. Oliver, and K. Durst, Mater. Des. 192, 108727 (2020).

    Article  Google Scholar 

  155. J. Roesler, H. Harders, and M. Baeker, Mechanic Behaviour of Engineering Material: Metals, Ceramics, Polymers, and Composites (Springer, Berlin, 2007).

    Google Scholar 

  156. V. Maier-Kiener, B. Schuh, E. P. George, H. Clemens, and A. Hohenwarter, J. Mater. Res. 32, 2658 (2017).

    Article  ADS  Google Scholar 

  157. J. S. K.-L. Gibson, S. Schroders, C. Zehnder, and S. Korte-Kerzel, Extreme Mech. Lett. 17, 43 (2017).

    Article  Google Scholar 

  158. B. D. Beake and A. J. Harris, Vacuum 159, 17 (2019).

    Article  ADS  Google Scholar 

  159. GOST (State Standard) No. 25-506-85. Calculations and strength tests. Methods for mechanical testing of metals. Determination of fracture toughness characteristics (fracture toughness under static loading).

  160. X.-K. Zhu and J. A. Joyce, Eng. Fract. Mech. 85, 1 (2012).

    Article  Google Scholar 

  161. M. Sebastiani, K. E. Johanns, E. G. Herbert, and G. M. Pharr, Curr. Opin. Solid State Mater. Sci. 19, 324 (2015).

    Article  ADS  Google Scholar 

  162. Y. Xiao, H. Besharatloo, B. Gan, X. Maeder, R. Spolenak, and J. M. Wheeler, J. Alloys Compd. 822, 153536 (2020).

    Article  Google Scholar 

  163. J. Ast, M. Ghidelli, K. Durst, M. Göken, M. Sebastiani, and A. M. Korsunsky, Mater. Des. 173, 107762 (2019).

    Article  Google Scholar 

  164. R. N. Clark, R. Burrows, R. Patel, S. Moore, K. R. Hallam, and P. E. J. Flewitt, Heliyon 6, 03448 (2020).

    Article  Google Scholar 

  165. J. Ast, J. J. Schwiedrzik, N. Rohbeck, X. Maeder, and J. Michler, Mater. Des. 193, 108765 (2020).

    Article  Google Scholar 

  166. D. Du, Y. Wu, Y. Zhao, M. Lum, and H. Huang, Mater. Characteriz. 164, 110302 (2020).

    Article  Google Scholar 

  167. B. D. Beake, R. Ctvrtlik, A. J. Harris, A. S. Martin, L. Vaclavek, J. Manak, and V. Ranc, Mater. Sci. Eng. A 780, 139159 (2020).

    Article  Google Scholar 

  168. S. Bruns, L. Petho, C. Minnert, J. Michler, and K. Durst, Mater. Des. 186, 108311 (2020).

    Article  Google Scholar 

  169. B. Lawn and R. Wilshaw, J. Mater. Sci. 10, 1049 (1975).

    Article  ADS  Google Scholar 

  170. A. G. Evans and E. A. Charles, J. Am. Ceram. Soc. 59, 371 (1976).

    Article  Google Scholar 

  171. J. Jang and G. M. Pharr, Acta Mater. 56, 4458 (2008).

    Article  ADS  Google Scholar 

  172. M. Ghidelli, M. Sebastiani, K. E. Johanns, and G. M. Pharr, J. Am. Ceram. Soc. 100, 5731 (2017).

    Article  Google Scholar 

  173. J. H. Lee, Y. F. Gao, K. E. Johanns, and G. M. Pharr, Acta Mater. 60, 5448 (2012).

    Article  ADS  Google Scholar 

  174. M. Sebastiani, K. E. Johanns, E. G. Herbert, F. Carassiti, and G. M. Pharr, Philos. Mag. 95, 1928 (2015).

    Article  ADS  Google Scholar 

  175. B. N. Jaya, C. Kirchlechner, and G. Dehm, J. Mater. Res. 30, 686 (2015).

    Article  ADS  Google Scholar 

  176. C. M. Lauener, L. Petho, M. Chen, Y. Xiao, J. Mich-ler, and J. M. Wheeler, Mater. Des. 142, 340 (2018).

    Article  Google Scholar 

  177. W. Kang and M. T. A. Saif, Adv. Funct. Mater. 23, 713 (2013).

    Article  Google Scholar 

  178. A.-N. Wang, J. F. Nonemacher, G. Yan, M. Finsterbusch, J. Malzbender, and M. Krüger, J. Eur. Ceram. Soc. 38, 3201 (2018).

    Article  Google Scholar 

  179. H. T. Liu, L. W. Yang, S. Han, H. F. Cheng, and W. G. Mao, J. Eur. Ceram. Soc. 37, 883 (2017).

    Article  Google Scholar 

  180. G. Bolelli, M. G. Righi, M. Z. Mughal, R. Moscatelli, O. Ligabue, N. Antolotti, M. Sebastiani, L. Lusvarghi, and E. Bemporad, Mater. Des. 166, 107615 (2019).

    Article  Google Scholar 

  181. J. P. Best, J. Wehrs, M. Polyakov, M. Morstein, and J. Michler, Stcruct. Mater. 162, 190 (2019).

    Google Scholar 

  182. J. F. Nonemacher, Y. Arinicheva, G. Yan, M. Finsterbusch, M. Krüger, and J. Malzbender, J. Eur. Ceram. Soc. 408, 3057 (2020).

    Article  Google Scholar 

  183. M. Heller, J. S. K.-L. Gibson, R. Pei, and S. Korte-Kerzel, Acta Mater. 194, 452 (2020).

    Article  ADS  Google Scholar 

  184. S. Zhang and X. Zhang, Thin Solid Films 520, 2375 (2012).

    Article  ADS  Google Scholar 

  185. X. Shi, H. Li, B. D. Beake, M. Bao, T. W. Liskiewicz, Z. Sun, and J. Chen, Surf. Coat. Technol. 383, 125288 (2020).

    Article  Google Scholar 

  186. Y. Mu, X. Zhang, J. W. Hutchinson, and W. J. Menga, J. Mater. Res. 32, 1421 (2017).

    Article  ADS  Google Scholar 

  187. D. DiMaio and S. G. Roberts, J. Mater. Res. 20, 299 (2005).

    Article  ADS  Google Scholar 

  188. T. P. Halford, K. Takashima, Y. Higo, and P. Bowen, Eng. Mater. Struct. 28, 695 (2005).

    Article  Google Scholar 

  189. K. Matoy, H. Schoenherr, T. Detzel, R. Pippan, C. Motz, and G. Dehm, Thin Solid Films 518, 247 (2009).

    Article  ADS  Google Scholar 

  190. J. Ast, B. Merle, K. Durst, and M. Göken, J. Mater. Res. 31, 3786 (2016).

    Article  ADS  Google Scholar 

  191. G. Žagar, V. Pejchal, M. G. Mueller, L. Michelet, and A. Mortensen, Struct. Mater. 112, 132 (2016).

    Google Scholar 

  192. M. G. Mueller, V. Pejchal, G. Žagar, A. Singh, M. Can-toni, and A. Mortensen, Acta Mater. 86, 385 (2015).

    Article  ADS  Google Scholar 

  193. A. Sáenz-Trevizo and A. M. Hodge, Nanotechnology 31, 292002 (2020).

    Article  Google Scholar 

  194. Y. Xua and D. Dini, Surf. Coat. Technol. 394, 125860 (2020).

    Article  Google Scholar 

  195. J. Buchinger, L. Löfler, J. Ast, A. Wagner, Z. Chen, J. Michler, Z. L. Zhang, P. H. Mayrhofer, D. Holec, and M. Bartosik, Mater. Des. 194, 108885 (2020).

    Article  Google Scholar 

  196. M. Alfreider, D. Kozic, O. Kolednik, and D. Kiener, Mater. Des. 148, 177 (2018).

    Article  Google Scholar 

  197. J. Ast, J. J. Schwiedrzik, J. Wehrs, D. Frey, M. N. Po-lyakov, J. Michler, and X. Maeder, Mater. Des. 152, 168 (2018).

    Article  Google Scholar 

  198. R. Pippan, S. Wurster, and D. Kiener, Mater. Des. 159, 252 (2018).

    Article  Google Scholar 

  199. Y. Deng and A. Barnoush, Acta Mater. 142, 236 (2018).

    Article  ADS  Google Scholar 

  200. C. Couroyer, M. Ghadiri, P. Laval, N. Brunard, and F. Kolenda, Oil Gas Sci. Technol. — Rev. IFP 55, 67 (2000).

    Google Scholar 

  201. L. Ribas, G. C. Cordeiro, R. D. T. Filho, and L. M. Tavares, Miner. Eng. 65, 149 (2014).

    Article  Google Scholar 

  202. V. Pejchal, M. Fornabaio, G. Zagar, G. Riesen, R. G. Martin, J. Medrický, T. Chraska, and A. Mor-tensen, Acta Mater. 145, 278 (2018).

    Article  ADS  Google Scholar 

  203. G. Žagar, V. Pejchal, M. Kissling, and A. Mortensen, Eur. J. Mech. Solids 72, 148 (2018).

    Article  ADS  Google Scholar 

  204. J. Huang, S. Xu, H. Yi, and S. Hu, Powder Technol. 268, 86 (2014).

    Article  Google Scholar 

  205. P. Zhang, S. X. Li, and Z. F. Zhang, Mater. Sci. Eng. A 529, 62 (2011).

    Article  Google Scholar 

  206. A. K. Saxena, S. Brinckmann, B. Völker, G. Dehm, and C. Kirchlechner, Mater. Des. 191, 108582 (2020).

    Article  Google Scholar 

  207. W. Zhang, Y. Gao, and T.-G. Nieh, in Handbook of Mechanics of Materials, Ed. by C.-H. Hsueh (Springer Nature, Singapore, 2019), p. 1239.

    Google Scholar 

  208. Composite Materials. A Vision for the Future, Ed. by L. Nicolais, M. Meo, and E. Milella (Springer, London, 2011).

    Google Scholar 

  209. Composite Materials Processing, Applications, Characterizations, Ed. by K. K. Kar (Springer, Berlin, 2017).

    Google Scholar 

  210. M. G. R. Sause, In Situ Monitoring of Fiber-Reinforced Composites: Theory, Basic Concepts, Methods, and Applications (Springer, Switzerland, 2016).

    Book  Google Scholar 

  211. P. K. Mallick, Fibre Reinforced Composites: Materials, Manufacturing, and Design, 3rd ed. (Taylor, CRC, Boca Raton, 2008).

  212. K. K. Chawla, Composite Materials Science and Engineering, 3rd ed. (Springer, New York, 2012).

    Google Scholar 

  213. A. J. Clancy, D. B. Anthony, and F. de Luca, ACS A-ppl. Mater. Interfaces 12, 15955 (2020).

    Article  Google Scholar 

  214. M. Ashby, Materials Selection in Mechanical Design, 2nd ed. (Oxford, 1999).

    Google Scholar 

  215. A. Güemes, A. Fernandez-Lopez, A. R. Pozo, and J. Sierra-Pérez, J. Compos. Sci. 4, 13 (2020).

    Article  Google Scholar 

  216. P. Nikaeen, D. Depan, and A. Khattab, Nanomaterials 9, 1357 (2019).

    Article  Google Scholar 

  217. S. Xiao, Y. Tan, X. Wang, L. Gao, L. Wang, and Z. Qi, Chem. Phys. Lett. 703, 8 (2018).

    Article  ADS  Google Scholar 

  218. A. M. Díez-Pascual, M. A. Gómez-Fatou, F. Ania, and A. Flores, Prog. Mater. Sci. 67, 1 (2015).

    Article  Google Scholar 

  219. Y. Gaillard and F. Amiot, Composites A 132, 105807 (2020).

  220. M. Hardiman, T. J. Vaughan, and C. T. McCarthy, Compos. Struct. 180, 782 (2017).

    Article  Google Scholar 

  221. H. Wang, H. Zhang, K. Goto, I. Watanabe, H. Kitazawa, M. Kawai, H. Mamiya, and D. Fujita, Sci. Technol. Adv. Mater. 21, 267 (2020).

    Article  Google Scholar 

  222. J. Karger-Kocsis, H. Mahmood, and A. Pegoretti, Prog. Mater. Sci. 73, 1 (2015).

    Article  Google Scholar 

  223. M. Hardiman, T. J. Vaughan, and C. T. McCarthy, Composites A 68, 296 (2015).

  224. A. I. Gulyaev, Tr. VIAM 75, 68 (2019).

    Article  Google Scholar 

  225. S. C. Gallo, X. Li, Z. Zhang, C. Charitidis, and H. Dong, Composites A 112, 178 (2018).

  226. G. P. Tandon and N. J. Pagano, Compos. Sci. Technol. 58, 1709 (1998).

    Article  Google Scholar 

  227. W. M. Mueller, J. Moosburger-Will, M. G. R. Sause, and S. Horn, J. Eur. Ceram. Soc. 33, 441 (2013).

    Article  Google Scholar 

  228. S. Sockalingam and G. Nilakantan, Int. J. Aeronaut. Space Sci. 13, 282 (2012).

    Article  Google Scholar 

  229. S. M. Medina, J. M. Molina-Aldareguía, C. González, P. Flores, and J. Llorca, J. Compos. Mater. 50, 1651 (2016).

    Article  ADS  Google Scholar 

  230. Q. Li, Y. Li, Z. Zhang, and L. Zhou, Composites A 135, 105911 (2020).

  231. G. Riesgo, L. Elbaile, R. Moriche, J. Carrizo, R. D. Crespo, M. A. García, R. Sepúlveda, J. A. Gar-cía, and Y. Torres, Polymer Test. 79, 106020 (2019).

    Article  Google Scholar 

  232. A. D. M. Charles, A. N. Rider, S. A. Brown, and C. H. Wang, Prog. Mater. Sci. 115, 100705 (2021).

    Article  Google Scholar 

  233. T. Matsuda, T. Sano, M. Munekane, M. Ohata, and A. Hirose, Scr. Mater. 186, 196 (2020).

    Article  Google Scholar 

  234. S. Du, S. Wang, and W. Xu, Materials 13, 2072 (2020).

    Article  ADS  Google Scholar 

  235. B. Kalyan, C. S. N. Murthy, and R. P. Choudhary, Int. J. Res. Eng. Appl. Sci. 5, 33 (2015).

    Google Scholar 

  236. C. D. Viktorov, Yu. I. Golovin, A. N. Kochanov, A. I. Tyurin, I. A. Shuvarin, and T. S. Pirozhkova, Fiz.-Tekh. Probl. Razrab. Polezn. Iskopaem., No. 4, 46 (2014).

  237. Yu. I. Golovin, A. A. Dmitrievskii, I. A. Pushnin, and N. Yu. Suchkova, Phys. Solid State 46, 1851 (2004).

    Article  ADS  Google Scholar 

  238. A. Xu, D. E. J. Armstrong, C. Beck, M. P. Moody, G. D. W. Smith, P. A. J. Bagot, and S. G. Roberts, Acta Mater. 124, 71 (2017).

    Article  ADS  Google Scholar 

  239. C. D. Hardie, S. G. Roberts, and A. J. Bushby, J. Nucl. Mater. 462, 391 (2015).

    Article  ADS  Google Scholar 

  240. H. L. Yang, S. Kano, J. J. Shen, J. McGrady, Y. F. Li, D. Y. Chen, K. Murakami, and H. Abe, J. Nucl. Mater. 531, 152016 (2020).

    Article  Google Scholar 

  241. A. Sıaenz-Trevizo and A. M. Hodge, Nanotechnology 31, 292002 (2020).

    Article  Google Scholar 

  242. I. E. Azhari, J. García, M. Zamanzade, F. Soldera, C. Pauly, C. Motz, L. Llanes, and F. Mücklich, Mater. Des. 186, 108283 (2020).

    Article  Google Scholar 

  243. J. P. Best, J. Wehrs, M. Polyakov, M. Morstein, and J. Michler, Scr. Mater. 162, 190 (2019).

    Article  Google Scholar 

  244. E. G. Herbert, P. S. Phani, and K. E. Johanns, Curr. Opin. Solid State Mater. Sci. 19, 334 (2015).

    Article  ADS  Google Scholar 

  245. M. L. Oyen, Exp. Tech. 37, 73 (2013).

    Article  Google Scholar 

  246. L. Cacopardo, G. Mattei, and A. Ahluwalia, Materialia 9, 100552 (2020).

    Article  Google Scholar 

  247. F. Sumbul and F. Rico, in Atomic Force Microscopy. Methods in Molecular Biology, Ed. by N. Santos and F. Carvalho (Humana Press, New York, 2019).

    Google Scholar 

  248. S. S. Mandal, ACS Omega 5, 11271 (2020).

    Article  Google Scholar 

  249. Y. Deng, T. Wu, M. Wang, S. Shi, G. Yuan, X. Li, H. Chong, B. Wu, and P. Zheng, Nat. Commun. 10, 2775 (2019).

    Article  ADS  Google Scholar 

  250. B. Yang, Z. Liu, H. Liu, and M. A. Nash, Front. Mol. Biosci. 7, 85 (2020).

    Article  Google Scholar 

  251. C. Valotteau, F. Sumbul, and F. Rico, Biophys. Rev. 11, 689 (2019).

    Article  Google Scholar 

  252. G. R. Heath and S. Scheuring, Curr. Opin. Struct. Biol. 57, 93 (2019).

    Article  Google Scholar 

  253. Single Molecule Dynamics in Life Science, Ed. by T. Yanagida and Y. Ishii (Wiley-VCH, Weinheim, 2009).

    Google Scholar 

  254. Single-Molecule Studies of Proteins, Ed. by A. F. Oberhauser (Springer, Heidelberg, 2013).

    Google Scholar 

  255. J. D. Humphrey, E. R. Dufresne, and M. A. Schwartz, Nat. Rev. Mol. Cell Biol. 15, 802 (2014).

    Article  Google Scholar 

  256. N. L. Klyachko, M. Sokolsky-Papkov, N. Pothayee, M. V. Efremova, D. A. Gulin, A. A. Kuznetsov, A. G. Majouga, J. S. Riffle, Y. I. Golovin, and A. V. Kabanov, Angew. Chem. Int. Ed. 124, 12182 (2012).

    Article  Google Scholar 

  257. M. V. Efremova, M. M. Veselov, A. V. Barulin, I. M. Le-Deygen, I. V. Uporov, E. V. Kudryashova, A. G. Majouga, Y. I. Golovin, A. V. Kabanov, N. L. Klyachko, S. L. Gribanovsky, and M. Sokolsky-Papkov, ACS Nano 12, 3190 (2018).

    Article  Google Scholar 

  258. A. Stylianou, S.-V. Kontomaris, C. Grant, and E. Alexandratou, Scanning 2019, 1 (2019).

    Article  Google Scholar 

  259. T. M. Kiio and S. Park, Int. J. Med. Sci. 17, 844 (2020).

    Article  Google Scholar 

  260. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers (World Scientific, Singapore, 2006).

    Book  MATH  Google Scholar 

  261. M. Tanase, N. Biais, and M. Sheetz, Meth. Cell Biol. 83, 473 (2007).

    Article  Google Scholar 

  262. K. C. Neuman and A. Nagy, Nat. Meth. 5, 491 (2008).

    Article  Google Scholar 

  263. A. Noy, Handbook of Molecular Force Spectroscopy (Springer, New York, 2008).

    Book  Google Scholar 

  264. F. Sumbul, A. Marchesi, H. Takahashi, S. Scheuring, and F. Rico, Meth. Mol. Biol. 1814, 243 (2018).

    Article  Google Scholar 

  265. F. Sumbul and F. Rico, Meth. Mol. Biol. 1886, 163 (2019).

    Article  Google Scholar 

  266. Yu. I. Golovin, A. O. Zhigachev, D. Yu. Golovin, S. L. Gribanovskii, A. V. Kabanov, and N. L. Klyachko, Bull. Russ. Acad. Sci.: Phys. 84, 815 (2020).

    Article  Google Scholar 

  267. Yu. I. Golovin, N. L. Klyachko, D. Yu. Golovin, M. V. Efremova, A. A. Samodurov, M. Sokolski-Papkov, and A. V. Kabanov, Tech. Phys. Lett. 39, 240 (2013).

    Article  ADS  Google Scholar 

  268. Yu. I. Golovin, S. L. Gribanovskii, D. Yu. Golovin, N. L. Klyachko, and A. V. Kabanov, Phys. Solid State 56, 1342 (2014).

    Article  ADS  Google Scholar 

  269. A. M. Master, P. N. Williams, N. Pothayee, N. Pothayee, R. Zhang, H. M. Vishwasrao, Y. I. Golovin, J. S. Riffle, M. Sokolsky, and A. V. Kabanov, Sci. Rep. 6, 33560 (2016).

    Article  ADS  Google Scholar 

  270. I. M. Le-Deygen, K. Yu. Vlasova, E. O. Kutsenok, A. D. Usvaliev, M. V. Efremova, A. O. Zhigachev, P. G. Rudakovskaya, D. Yu. Golovin, S. L. Gribanovsky, E. V. Kudryashova, A. G. Majouga, Y. I. Go-lovin, A. V. Kabanov, and N. L. Klyachko, Nanomed.: Nanotechnol., Biol. Med. 21, 102065 (2019).

    Google Scholar 

  271. T. Mammoto and D. E. Ingber, Development 137, 1407 (2010).

    Article  Google Scholar 

  272. J. Nagatomi and E. E. Ebong, Mechanobiology Handbook, 2nd ed. (CRC, Boca Raton, FL, 2018).

    Google Scholar 

  273. Y. I. Golovin, S. L. Gribanovsky, D. Y. Golovin, N. L. Klyachko, A. G. Majouga, A. M. Master, M. Sokolsky, and A. V. Kabanov, J. Control. Release 219, 43 (2015).

    Article  Google Scholar 

  274. Y. I. Golovin, N. L. Klyachko, A. G. Majouga, M. Sokolsky, and A. V. Kabanov, J. Nanopart. Res. 19, 63 (2017).

    Article  ADS  Google Scholar 

  275. Yu. I. Golovin, N. L. Klyachko, A. G. Majouga, S. L. Gribanovskii, D. Yu. Golovin, A. O. Zhigachev, A. V. Shuklinov, M. V. Efremova, M. M. Veselov, K. Yu. Vlasova, A. D. Usvaliev, I. M. Le-Deygen, and A. V. Kabanov, Nanotechnol. Russ. 13, 215 (2018).

    Article  Google Scholar 

  276. R. A. Andrievskii and A. M. Glezer, Phys. Usp. 52, 315 (2009).

    Article  ADS  Google Scholar 

  277. G. A. Malygin, Phys. Usp. 54, 1091 (2011).

    Article  ADS  Google Scholar 

  278. G. Z. Voyiadjis and M. Yaghoobi, Size Effects in Plasticity: From Macro to Nano (Academic, New York, 2020).

    Google Scholar 

  279. W. Weibull, A Statistical Theory of the Strength of Materials, Vol. 151 of Proc. Royal Swedish Inst. Eng. Res. Rep. (Generalstabens Litogr. Anstalts Förlag, Stockholm, 1939).

  280. W. Weibull, Fatigue Testing and Analysis of Results (Elsevier, Amsterdam, 1961).

    Google Scholar 

  281. A. A. Griffith, Philos. Trans. A 221, 179 (1921).

    Google Scholar 

  282. E. Arzt, Acta Mater. 46, 5611 (1998).

    Article  ADS  Google Scholar 

  283. Y. Xiao, Y. Zou, A. S. Sologubenko, R. Spolenak, and J. M. Wheeler, Mater. Des. 193, 108786 (2020).

    Article  Google Scholar 

  284. R. W. Armstrong, Mater. Trans. 55, 2 (2014).

    Article  Google Scholar 

  285. Z. C. Cordero, B. E. Knight, and C. A. Schuh, Int. Mater. Rev. 61, 495 (2016).

    Article  Google Scholar 

  286. Y. Li, A. J. Bushby, and D. J. Dunstan, Proc. R. Soc. A 472, 20150890 (2016).

    Article  ADS  Google Scholar 

  287. C.-H. Yu, K.-P. Lin, and C.-S. Chen, in Handbook of Mechanics of Materials (Springer Nature, Singapore, 2019), Chap. 24, p. 759.

    Google Scholar 

  288. S. N. Naik and S. M. Walley, J. Mater. Sci. 55, 2661 (2020).

    Article  ADS  Google Scholar 

  289. K. S. R. Chandran, J. Mater. Res. 34, 1 (2019).

    Article  Google Scholar 

  290. R. W. Armstrong, Philos. Mag. 96, 3097 (2016).

    Article  ADS  Google Scholar 

  291. Yu. I. Golovin, M. G. Isaenkova, O. A. Krymskaya, V. M. Vasyukov, R. A. Stolyarov, A. V. Shuklinov, and L. E. Polyakov, Tech. Phys. Lett. 36, 369 (2010).

    Article  ADS  Google Scholar 

  292. Yu. I. Golovin, A. I. Tyurin, E. G. Aslanyan, T. S. Pirozhkova, and V. M. Vasyukov, Phys. Solid State 59, 1803 (2017).

    Article  ADS  Google Scholar 

  293. Thermally Activated Mechanisms in Crystal Plasticity, Ed. by D. Caillard and J.-L. Martin (Elsevier, Amsterdam, 2003).

    Google Scholar 

  294. Yu. I. Golovin and A. I. Tyurin, JETP Lett. 60, 742 (1994).

    ADS  Google Scholar 

  295. Yu. I. Golovin, V. I. Ivolgin, V. V. Korenkov, and A. I. Tyurin, Tech. Phys. Lett. 23, 621 (1997).

    Article  ADS  Google Scholar 

  296. J. K. Masson, A. C. Lund, and C. A. Schuh, Phys. Rev. B 73, 054102 (2006).

    Article  ADS  Google Scholar 

  297. C. E. Packard and C. A. Schuh, Acta Mater. 55, 5348 (2007).

    Article  ADS  Google Scholar 

  298. V. L. Indenbom, JETP Lett. 12, 369 (1970).

    ADS  Google Scholar 

  299. V. L. Indenbom and A. N. Orlov, Fiz. Met. Metalloved. 43, 469 (1977).

    Google Scholar 

  300. Yu. I. Golovin and A. I. Tyurin, Phys. Solid State 42, 1865 (2000).

    Article  ADS  Google Scholar 

  301. J. Li, K. J. Van Vliet, T. Zhu, S. Yip, and S. Suresh, Nature (London, U.K.) 418, 307 (2002).

    Article  ADS  Google Scholar 

  302. K. J. VanVliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Phys. Rev. B 67, 104105 (2003).

    Article  ADS  Google Scholar 

  303. C. A. Schuh and A. C. Lund, J. Mater. Res. 19, 2152 (2004).

    Article  ADS  Google Scholar 

  304. S. A. Schuh, J. K. Mason, and A. S. Lund, Nat. Mater. 4, 617 (2005).

    Article  ADS  Google Scholar 

  305. J. K. Mason, A. C. Lund, and C. A. Schuh, Phys. Rev. B 73, 054102 (2006).

    Article  ADS  Google Scholar 

  306. C. E. Packard and C. A. Schuh, Acta Mater. 55, 5348 (2007).

    Article  ADS  Google Scholar 

  307. J. R. Greer, W. C. Oliver, and W. D. Nix, Acta Mater. 53, 1821 (2005).

    Article  ADS  Google Scholar 

  308. A. Jerrusalem, A. Fernandez, A. Kunz, and J. R. Greer, Scr. Mater. 66, 93 (2012).

    Article  Google Scholar 

  309. M. B. Lowry, D. Kiener, M. M. Le Blanc, C. Chi-sholm, J. N. Florando, J. W. Morris, Jr., and A. M. Mi-nor, Acta Mater. 58, 5160 (2010).

    Article  ADS  Google Scholar 

  310. C. Chisholm, H. Bei, M. B. Lowry, J. Oh, S. A. S. Asif, O. L. Warren, Z. W. Shan, E. P. George, and A. M. Mi-nor, Acta Mater. 60, 2258 (2012).

    Article  ADS  Google Scholar 

  311. Q. Yu, M. Legros, and A. M. Minor, MRS Bull. 40, 62 (2015).

    Article  Google Scholar 

  312. R. Fritz, V. Maier-Kiener, D. Lutz, and D. Kiener, Mater. Sci. Eng. A 674, 626 (2016).

    Article  Google Scholar 

  313. M. Bagheripoor and R. Klassen, Rev. Adv. Mater. Sci. 56, 21 (2018).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research within project no. 19-12-50235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I. Nanoindentation and Mechanical Properties of Materials at Submicro- and Nanoscale Levels: Recent Results and Achievements. Phys. Solid State 63, 1–41 (2021). https://doi.org/10.1134/S1063783421010108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010108

Keywords:

Navigation