Skip to main content
Log in

Model Estimations of Fluorografene Properties

  • GRAPHENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Analytical expressions for the electronic band dispersion were derived using the Green’s function method in the tight binding approximation. A parabolic approximation of the spectrum is proposed, within which the effective carrier mass and quantum capacitance are determined. Using the Koster–Slater and Haldane—Anderson models, the problem of local states of mono- and divacancies are considered. Characteristic phonon frequencies and elastic constants are estimated. The results obtained are compared to the calculation data of other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  ADS  Google Scholar 

  2. O. Leenaerts, H. Peelaers, A. D. Hernández-Nieves, B. Partoens, and F. M. Peeters, Phys. Rev. B 82, 195436 (2010).

    Article  ADS  Google Scholar 

  3. R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H.-M. Cheng, W. Strupinski, L. G. Bu-lusheva, A. V. Okotrub, et al., Small 6, 2877 (2010).

    Article  Google Scholar 

  4. R. Zboril, F. Karlicky, A. B. Bourlinos, T. A. Steriotis, A. K. Stubos, V. Georgakilas, K. Safarova, D. Jancik, C. Trapalis, and M. Otyepka, Small 6, 2885 (2010).

    Article  Google Scholar 

  5. K.-J. Jeon, Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C.-M. Park, R. Mendelsberg, V. Radmilovic, R. Kostecki, T. J. Richardson, and E. Rotenberg, ACS Nano 5, 1042 (2011).

    Article  Google Scholar 

  6. W. Feng, P. Long, Y. Feng, and Y. Li, Adv. Sci. 3, 1500413 (2016). https://doi.org/10.1002/advs.201500413

    Article  Google Scholar 

  7. D. D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril, and M. Otyepka, Appl. Mater. Today 9, 60 (2017).

    Article  Google Scholar 

  8. S. Yu. Davydov, Phys. Solid State 62 (2020, in press).

  9. E. Muñoz, A. K. Singh, M. A. Ribas, E. S. Penev, and B. I. Yakobson, Diamond Relat. Mater. 19, 368 (2010).

    Article  ADS  Google Scholar 

  10. D. K. Samarakoon, Z. Chen, C. Nicolas, and X.‑Q. Wang, Small 7, 965 (2011).

    Article  Google Scholar 

  11. W. Wei and T. Jacob, Phys. Rev. B 87, 115431 (2013).

    Article  ADS  Google Scholar 

  12. D. L. John, L. C. Castro, and D. L. Pulfrey, J. Appl. Phys. 96, 5180 (2004).

    Article  ADS  Google Scholar 

  13. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  14. S. Yu. Davydov, A. A. Lebedev, P. V. Bulat, and A. V. Zubov, Tech. Phys. Lett. 46, 733 (2020).

    Article  ADS  Google Scholar 

  15. S. Yu. Davydov, A. A. Lebedev, and O. V. Posrednik, An Elementary Introduction to the Theory of Nanosystems (Lan’, St. Petersburg, 2014) [in Russian].

  16. S. Yuan, M. Rösner, A. Schulz, T. O. Wehling, and M. I. Katsnelson, Phys. Rev. Lett. 114, 047403 (2015).

    Article  ADS  Google Scholar 

  17. W. Wei and T. Jacob, Phys. Rev. B 87, 115431 (2013).

    Article  ADS  Google Scholar 

  18. F. Karlicky and M. Otyepka, Ann. Phys. (Berlin) 526, 408 (2014).

    Article  ADS  Google Scholar 

  19. S. Yu. Davydov, Phys. Solid State 54, 2329 (2012).

    Article  ADS  Google Scholar 

  20. L. Hao, H.-Yan Lu, and C. S. Ting, Phys. Rev. Mater. 3, 024003 (2019); arXiv: 1812.0777v1.

    Article  Google Scholar 

  21. W. A. Harrison, The Electronic Structure and Properties of Solids (Freeman, San Francisco, CA, 1980).

    Google Scholar 

  22. W. A. Harrison, Phys. Rev. B 27, 3592 (1983).

    Article  ADS  Google Scholar 

  23. S. Yu. Davydov and O. V. Posrednik, Phys. Solid State 57, 837 (2015).

    Article  ADS  Google Scholar 

  24. W. A. Harrison, Phys. Rev. B 31, 2121 (1985).

    Article  ADS  Google Scholar 

  25. H. Peelaers, A. D. Hernández-Nieves, O. Leenaerts, B. Partoens, and F. M. Peeters, Appl. Phys. Lett. 98, 051914 (2011).

    Article  ADS  Google Scholar 

  26. S. Yu. Davydov and G. I. Sabirova, Tech. Phys. Lett. 37, 515 (2011).

    Article  ADS  Google Scholar 

  27. S. Yu. Davydov, Tech. Phys. Lett. 44, 105 (2018).

    Article  Google Scholar 

  28. S. Yu. Davydov, Phys. Solid State 59, 629 (2017).

    Article  ADS  Google Scholar 

  29. Z. H. Ni, W. Chen, X. F. Fan, J. L. Kuo, T. Yu, A. T. S. Wee, and Z. X. Shen, Phys. Rev. B 77, 115416 (2008).

    Article  ADS  Google Scholar 

  30. J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).

    Article  ADS  Google Scholar 

  31. A. K. Geim and I. V. Grigorieva, Nature (London, U.K.) 499, 419 (2013).

    Article  Google Scholar 

  32. C.-J. Tong, H. Zhang, Y.-N. Zhang, H. Liu, and L.‑M. Liu, J. Mater. Chem. A 2, 17971 (2014).

    Article  Google Scholar 

  33. I. V. Antonova, Semiconductors 50, 66 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. Model Estimations of Fluorografene Properties. Phys. Solid State 63, 183–187 (2021). https://doi.org/10.1134/S1063783421010078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010078

Keywords:

Navigation