Skip to main content
Log in

Optical Characterization of the Structural and Electrical Properties of the n-GaP Nanolayers Grown on Conductive (001) n-GaP Substrates

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The results of investigations of the structural and electrical properties of a homoepitaxial nanoscale (001) n-GaP layer of 70 nm in thickness grown by metalorganic vapor phase epitaxy on a conductive highly doped substrate of an n-GaP crystal oriented along (001) axis are reported. In the Raman spectrum of such an n-GaP nanolayer in the n-GaP/(001) n-GaP sample, as compared to the spectrum of the high-ohmic crystalline (001) si-GaP sample, we have managed to discover two quite narrow lines attributed to vibrations of transverse TO(Γ) phonons and high-frequency longitudinal coupled plasmon–phonon LO(Γ)+ vibrations. It is established that the spectral parameters of the LO(Γ)+ vibrations in both the n-GaP nanolayer and the (001) n-GaP substrate are significantly different from each other and from the spectral parameters of the line of longitudinal optical LO(Γ) phonons. Analysis of the revealed strict quantitative features of the spectral parameters has made it possible to obtain valuable data on the degree of perfection of the crystal structure for the nanoscale homoepitaxial (001) n-GaP layer. In addition, it is shown that numerical calculations based on the microscopic model of light scattering by LO(Γ)+ vibrations, caused by the mechanisms of the deformation potential and electro-optical scattering, has enabled noncontact and nondestructive determination of the concentration n and mobility μ of free charge carriers in the nanoscale-thick homoepitaxial layer and the conductive highly doped substrate. The obtained values have proved to be as follows: the concentration nhepi = (3.25 ± 0.1) × 1017 cm–3 for and the mobility μhepi = (40.0 ± 0.1) cm2 V–1 s–1 for the homoepitaxial (001) n-GaP layer, against nsubs = (2.52 ± 0.1) × 1017 cm–3 and μsubs = (51.0 ± 0.1) cm2 V–1 s–1 for the (001) n-GaP substrate of the n-GaP/(001) n-GaP sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. M. Itoh, Prog. Surf. Sci. 66, 53 (2001).

    Article  ADS  Google Scholar 

  2. R. Kratzer, C. G. Morgan, and M. Scheffler, Phys. Rev. B 59, 15246 (1999).

    Article  ADS  Google Scholar 

  3. Yu. G. Galitsyn, D. V. Dmitriev, V. G. Mansurov, S. P. Moshchenko, and A. I. Toropov, JETP Lett. 86, 482 (2007).

    Article  ADS  Google Scholar 

  4. O. A. Ageev, M. Solodovnik, S. V. Balakirev, I. A. Mikhalin, and M. Eremenko, J. Cryst. Growth 457, 46 (2017).

    Article  ADS  Google Scholar 

  5. O. S. Komkov, A. N. Pikhtin, Yu. V. Zhilyaev, and L. M. Fedorov, Tech. Phys. Lett. 34, 37 (2008).

    Article  ADS  Google Scholar 

  6. B. Németh, W. Kunert, K. Stolz, and K. Volz, J. Cryst. Growth 310, 1595 (2008).

    Article  ADS  Google Scholar 

  7. S. Nagarajan, H. Jussila, J. Lemettinen, K. Banerjee, M. Sopanen, and H. Lipsanen, J. Phys. D 46, 165103 (2013).

    Article  ADS  Google Scholar 

  8. O. S. Komkov, D. D. Firsov, T. V. Lvova, I. V. Sedova, A. N. Semenov, V. A. Solov’ev, and S. V. Ivanov, Phys. Solid State 58, 2394 (2016).

    Article  ADS  Google Scholar 

  9. K. Storm, F. Halvardsson, M. Heurlin, D. Lingren, A. Gustafsson, P. M. Wu, B. Monemar, and L. Samuelson, Nat. Nanotechnol. 7, 718 (2012).

    Article  ADS  Google Scholar 

  10. Light Scattering in Solids, Topics in Applied Physics, Ed. M. Cardona and G. Guntherodt (Springer, Berlin, Heidelberg, New York, 1974).

    Google Scholar 

  11. B. H. Bairamov, V. A. Voitenko, V. V. Toporov, G. Irmer, and J. Monecke, Phys. Status Solidi 1, 2773 (2004).

    Google Scholar 

  12. F. H. Bayramov, G. Irmer, V. V. Toporov, and B. H. Bairamov, Jpn. J. Appl. Phys. 50, 05FE06 (2011).

    Article  Google Scholar 

  13. B. Kh. Bairamov, V. A. Voitenko, and I. P. Ipatova, Phys. Usp. 36, 392 (1993).

    Article  ADS  Google Scholar 

  14. B. H. Bairamov, V. A. Voitenko, and I. P. Ipatova, Phys. Rep. 229, 221 (1993).

    Article  ADS  Google Scholar 

  15. B. H. Bairamov, I. P. Ipatova, V. V. Toporov, V. A. Voitenko, G. Irmer, J. Monecke, and E. Jahne, Appl. Surf. Sci. 50, 300 (1991).

    Article  ADS  Google Scholar 

  16. B. H. Bairamov, V. A. Voitenko, B. P. Zakharchenya, V. V. Toporov, M. Henini, and A. J. Kent, Nanotechnology 11, 314 (2000).

    Article  ADS  Google Scholar 

  17. G. Irmer, V. V. Toporov, B. H. Bairamov, and J. Monecke, Phys. Status Solidi 119, 595 (1983).

    Article  Google Scholar 

  18. B. H. Bairamov A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, Phys. Status Solidi B 119, 227 (1983).

    Article  ADS  Google Scholar 

  19. J. T. Holmi, B. H. Bairamov, S. Suihkonen, and H. Lipsanen, J. Cryst. Growth 499, 47 (2018).

    Article  ADS  Google Scholar 

  20. H. Harima, J. Condens. Matter Phys. 14, 967 (2002).

    Article  ADS  Google Scholar 

  21. S. Nakashima and H. Harima, Phys. Status Solidi 162, 39 (1997).

    Article  ADS  Google Scholar 

  22. L. Artús, R. Cuscó, J. Ibáñez, N. Blanco, and G. González-Díaz, Phys. Rev. B 60, 5456 (1999).

    Article  ADS  Google Scholar 

  23. B. H. Bairamov, V. V. Toporov, and F. B. Bayramov, Semiconductors 53, 2129 (2019).

    Article  ADS  Google Scholar 

  24. B. Kh. Bairamov, V. V. Toporov, and F. B. Bairamov, Semiconductors 54 (11) (2020, in press).

  25. F. B. Bayramov, V. V. Toporov, O. B. Chakchir, V. N. Anisimov, and B. Kh. Bairamov, Tech. Phys. Lett. 44, 505 (2018).

    Article  ADS  Google Scholar 

  26. B. Kh. Bairamov, Phys. Solid State 58, 728 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kh. Bairamov.

Ethics declarations

The authors claim that there is no conflicts of interest.

Additional information

Translated by Z. Smirnova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairamov, B.K., Toporov, V.V. & Bayramov, F.B. Optical Characterization of the Structural and Electrical Properties of the n-GaP Nanolayers Grown on Conductive (001) n-GaP Substrates. Phys. Solid State 63, 79–83 (2021). https://doi.org/10.1134/S1063783421010030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421010030

Keywords:

Navigation