Skip to main content
Log in

Structural and Physical Properties of DyCu, NdAg, LaCd, YIn, ErCu, ErAg, and ErAu Rare-Earth Intermetallic Compounds: Ab initio Investigations Analyzed by Data Mining Technique

  • DIELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In this work, the structural, elastic, mechanical, thermodynamic, and electronic properties of ErCu, ErAg, ErAu, DyCu, NdAg, LaCd, and YIn compounds have been investigated systematically using full-potential linearized augmented plane wave (FP-LAPW) within the density functional theory (DFT). In this approach, the exchange–correlation energy was calculated with generalized gradient approximation (GGA), by Perdew–Burke–Ernzerhof (PBE). We have firstly calculated lattice constants, bulk modulus, elastic constants, and mechanical properties such as Young’s and shear moduli, Pugh factor (B/G), anisotropy constant, and Cauchy pressure, as well as Poisson coefficient. The elastic constants and their related properties verify the criteria of mechanical stability, signifying that these compounds are stable in B2 structure. The ductility of the intermetallics investigated here is evaluated. The obtained values show that ErCu is the most rigid while NdAg the most ductile. The total and partial electron density of states (DOS) were evaluated to offer a detailed explanation of the contribution of atomic orbitals in the energy bands. The thermodynamic properties of ErCu, ErAg, ErAu, NdAg, LaCd, YIn, and DyCu are calculated via the quasi-harmonic Debye model, in which the lattice vibrations are considered. So temperature-dependent parameters such as lattice constant, thermal expansion, and specific heat at constant volume are analyzed. Furthermore, the relationship between several thermo-physical and mechanical properties was discussed and analyzed with data mining techniques. The obtained results confirm that this B2-type of rare-earth intermetallics has very interesting mechanical and thermal properties for structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. A. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C. C. H. Lo, Y. Ye, A. Slager, and D. Kesse, Nat. Mater. 2, 587 (2003).

    Article  ADS  Google Scholar 

  2. A. M. Russell, Z. Zhang, K. A. Gschneidner, Jr., T. A. Lograsso, A. O. Pecharsky, A. J. Slager, and D. C. Kesse, Intermetallics 13, 565 (2005).

    Article  Google Scholar 

  3. J. R. Morris, Y. Ye, Y.-B. Lee, B. N. Harmon, K. A. Gschneidner, and A. M. Russell, Acta Mater. 52, 4849 (2004).

    Article  ADS  Google Scholar 

  4. Z. Zhang, A. M. Russell, S. B. Biner, K. A. Gschneidner, Jr., and C. C. H. Lo, Intermetallics 13, 559 (2005).

    Article  Google Scholar 

  5. K. A. Gschneidner, Jr., A. M. Russell, T. Lograsso, S. B. Biner, C. H. C. Lo, and J. R. Morris, FY Progress Report No. 127 (Oak Ridge National Laboratory, 2003–2005).

  6. D. B. Miracle and R. Darolia, in Intermetallic Compounds. Practice, Ed. by J. A. Westbrook and R. L. Fleischer (Wiley, New York, 1994), Vol. 2, p. 53.

    Google Scholar 

  7. N. S. Stoloff, C. T. Liu, and S. C. Deevi, Intermetallics 8, 1313 (2000).

    Article  Google Scholar 

  8. K. Yoshimi, S. Hanada, and H. Tokumo, Mater. Trans. JIM 35, 51 (1994).

    Article  Google Scholar 

  9. T. Kim, K. T. Hong, and K. S. Lee, Intermetallics 11, 33 (2005).

    Article  Google Scholar 

  10. K. A. Gschneidner, Jr., A. O. Pecharsky, and V. K. Pecharsky, in Cryocoolers, Ed. by R. G. Ross (New York, 2005), vol. 13, SE-47, p. 363.

  11. H. Devi, G. Pagare, S. S. Chouhan, and S. P. Sanyal, AIP Conf. Proc. 1591, 1054 (2014).

    Article  ADS  Google Scholar 

  12. Y. Wu, L. Xu, and W. Hu, Phys. B (Amsterdam, Neth.) 459, 69 (2015).

  13. X. Tao, H. Chen, X. Li, Y. Ouyang, and S. Liao, Phys. Scr. 83, 045301 (2011).

    Article  ADS  Google Scholar 

  14. S. Ahmad, R. Ahmed, S. J. Asadabadi, Z. Ali, and I. Ahmad, J. Magn. Magn. Mater. 422, 458 (2017).

    Article  ADS  Google Scholar 

  15. A. Saccone, D. Maccio, S. Delfino, and R. Ferro, Intermetallics 10, 903 (2002).

    Article  Google Scholar 

  16. S. S. Chouhan, G. Pagare, M. Rajagopalan, and S. P. Sanyal, Solid State Sci. 14, 1004 (2012).

    Article  ADS  Google Scholar 

  17. M. Shugani, M. Aynyas, H. Pawar, and S. P. Sanyal, Intermetallics Adv. Mater. Res. 1141, 77 (2016).

    Google Scholar 

  18. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  19. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  Google Scholar 

  20. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, and L. D. Marks, WIEN2k, An Augmented Plane Wave, Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitat, Wien, Austria, 2001), p. 4.

    Google Scholar 

  21. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Google Scholar 

  22. G. Lehmann and M. Taut, Phys. Status Solidi B 54, 469 (1972).

    Article  ADS  Google Scholar 

  23. C. Suh and K. Rajan, QSAR Combin. Sci. 24, 114 (2005).

    Article  Google Scholar 

  24. C. K. R. Suh, B. M. Vogel, and B. Narasimhan, and S. K. Mallapragada, in Combinatorial Materials Science, Ed. by S. K. Mallapragada, B. Narasimhan, and M. D. Porter (Wiley-Interscience, Hoboken, NJ, 2007).

    Google Scholar 

  25. S. Broderick and K. Rajan, in Proceedings of the 1st World Congress on Integrated Computational Materials (TMS, Wiley, 2011).

  26. http://www.xlstat.com.

  27. L. Ericksson, E. Johansson, N. Kettaneh-Wold, and S. Wold, Multi and Megavariate Data Analysis: Principles, Applications (Umetrics AB, Umeá, 2001).

    Google Scholar 

  28. M. E. Pate, M. K. Turner, N. F. Thornhill, and N. J. Titchener-Hooker, Biotechnol. Prog. 20, 215 (2004).

    Article  Google Scholar 

  29. C. Suh, A. Rajagopalan, X. Li, and K. Rajan, Data Sci. J. 1, 19 (2002).

    Article  Google Scholar 

  30. F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).

    Article  ADS  Google Scholar 

  31. M. J. Mehl, Phys. Rev. B 47, 2493 (1993).

    Article  ADS  Google Scholar 

  32. D. C. Wallace, in Thermodynamics of Crystals (Wiley, New York, 1972), Ch. 1.

    Book  Google Scholar 

  33. O. Beckstein, J. E. Klepeis, G. L. W. Hart, and O. Pankratov, Phys. Rev. B 63, 134112 (2001).

    Article  ADS  Google Scholar 

  34. S. F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  35. C. Kaderoglu, G. Surucu, and A. Erkisi, J. Electron. Mater. 46, 5827 (2017).

    Article  ADS  Google Scholar 

  36. A. Sekkal, A. Benzair, T. Ouahrani, H. I. Faraoun, G. Merad, H. Aourag, and C. Esling, Intermetallics 45, 65 (2014).

    Article  Google Scholar 

  37. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).

    MATH  Google Scholar 

  38. A. Reuss, Angew. A: Math. Mech. 9, 49 (1929).

    Google Scholar 

  39. B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, and P. C. Schmidt, Intermetallics 11, 23 (2003).

    Article  Google Scholar 

  40. O. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963).

    Article  ADS  Google Scholar 

  41. K. A. Gschneidner, Jr., M. Ji, C. Z. Wang, K. M. Ho, A. M. Russell, Y. Mudryk, A. T. Becker, and J. L. Larson, Acta Mater. 57, 5876 (2009).

    Article  ADS  Google Scholar 

  42. M. Mattesini, R. Ahuja, and B. Johansson, Phys. Rev. B 68, 184108 (2003).

    Article  ADS  Google Scholar 

  43. I. R. Shein and A. L. Ivanovskii, Scr. Mater. 59, 1099 (2008).

    Article  Google Scholar 

  44. D. G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  45. Y. Wu and W. Hu, Eur. Phys. J. B 60, 75 (2007).

    Article  ADS  Google Scholar 

  46. I. N. Frantsevich, F. F. Voronov, and S. A. Bokuta, in Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, Ed. by I. N. Frantsevich (Naukova Dumka, Kiev, 1983), p. 60 [in Russian].

    Google Scholar 

  47. M. A. Hadi, M. S. Ali, S. H. Naqib, and A. K. M. A. Islam, Chin. Phys. B 26, 037103 (2017).

    Article  ADS  Google Scholar 

  48. C. Zwikker, Physical Properties of Solid Materials (Pergamon, London, 1954), p 90.

    MATH  Google Scholar 

  49. H. M. Ledbetter, Mater. Sci. Eng. 27, 133 (1977).

    Article  Google Scholar 

  50. M. A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).

    Article  ADS  Google Scholar 

  51. A. Otero-de-la-Roza, D. Abbasi-Perez, and V. Luana, Comput. Phys. Commun. 182, 2232 (2011).

    Article  ADS  Google Scholar 

  52. P. Debye, Ann. Phys. 39, 789 (1912).

    Article  Google Scholar 

  53. A. T. Petit and P. L. Dulong, Ann. Chim. Phys. 10, 395 (1819).

    Google Scholar 

  54. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM Int., Materials Park, OH, USA, 1991), Vols. 1–4.

    Google Scholar 

  55. A. Saccone, D. Maccio, S. Delfino, and R. Ferro, Intermetallics 10, 903 (2002).

    Article  Google Scholar 

  56. K. W. Richter, S. Besana, G. Borzone, and H. Ipser, J. Alloys Compd. 365, 181 (2004).

    Article  Google Scholar 

  57. Y. I. Shi, Y. L. Du, G. Chen, and G. L. Chen, Adv. Mater. Trans. 49, 2480 (2008).

    Article  Google Scholar 

  58. A. M. Russell, Z. Zhang, T. A. Lograsso, C. C. H. Lo, A. O. Pecharsky, J. R. Morris, Y. Ye, K. A. Gschneidner, Jr., and A. J. Slager, Acta Mater. 52, 4033 (2004).

    Article  ADS  Google Scholar 

  59. A. Kellou, H. I. Feraoun, T. Grosdidier, C. Coddet, and H. Aourag, Acta Mater. 52, 3263 (2004).

    Article  ADS  Google Scholar 

  60. F. Saidi, N. Sebaa, A. Mahmoudi, H. Aourag, G. Merad, and M. Dergal, J. Solid State Commun. 274, 9 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the High School in Applied Sciences of Algiers (E.S.S.A). We would like to thank Professor El Mustapha Daya, Director of the Laboratory Etude des Microstructures et de Mécanique des Matériaux, LEM3 UMR CNRS7239, University of Lorraine UL, Metz, France for providing the opportunity to visit their laboratory and for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sekkal.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekkal, A., Saidi, F., Benzair, A. et al. Structural and Physical Properties of DyCu, NdAg, LaCd, YIn, ErCu, ErAg, and ErAu Rare-Earth Intermetallic Compounds: Ab initio Investigations Analyzed by Data Mining Technique. Phys. Solid State 62, 2305–2317 (2020). https://doi.org/10.1134/S1063783420120240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420120240

Keywords:

Navigation