Skip to main content
Log in

Energy Spectrum and Optical Absorption Spectrum of Fullerene C28 within the Hubbard Model

  • FULLERENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Anticommutator Green’s functions and energy spectra of the C28 fullerene and the endohedral Zr@C28 fullerene with the symmetry group Td are obtained within the Hubbard model in the approximation of static fluctuations. Using the methods of group theory, the classification of energy states is carried out, and the allowed transitions in the energy spectra of C28 and Zr@C28 molecules are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).

    Google Scholar 

  2. A. Hirsch and M. Brettreich, Fullerenes: Chemistry and Reactions (Wiley-VCH, Weinheim, 2005).

    Google Scholar 

  3. T. Guo, M. D. Diener, Y. Chai, M. J. Alford, R. E. Haufler, S. M. McClure, T. Ohno, J. H. Weaver, G. E. Scuseria, and R. E. Smalley, Science (Washington, DC, U. S.) 257, 1661 (1993).

    Google Scholar 

  4. A. N. Enyashin, V. V. Ivanovskaya, Yu. N. Makurin, and A. L. Ivanovskii, Phys. Solid State 46, 1569 (2004).

    ADS  Google Scholar 

  5. A. N. Enyashin and A. L. Ivanovskii, JETP Lett. 86, 537 (2007).

    ADS  Google Scholar 

  6. P. W. Dunk, N. K. Kaiser, M. Mulet-Gas, A. Rodríguez-Fortea, J. M. Poblet, H. Shinohara, C. L. Hendrickson, A. G. Marshall, and H. W. Kroto, J. Am. Chem. Soc. 134, 9380 (2012).

    Google Scholar 

  7. A. Miralrio and L. E. Sansores, J. Comput. Theor. Chem. 1083, 53 (2016).

    Google Scholar 

  8. A. Gomez-Torres, R. Esper, P. W. Dunk, R. Molares-Martínez, A. Rodríguez-Fortea, L. Echegoyen, and J. M. Poblet, Helv. Chim. Acta 46, 1 (2019).

    Google Scholar 

  9. P. W. Fowler and D. E. Manolopoulous, An Atlas of Fullerenes (Clarendon, Oxford, 1995).

    Google Scholar 

  10. R. K. Mishra, Y.-T. Lin, and S.-L. Lee, Chem. Phys. Lett. 313, 437 (1999).

    ADS  Google Scholar 

  11. A. V. Silant’ev, J. Exp. Theor. Phys. 121, 653 (2015).

    ADS  Google Scholar 

  12. G. S. Ivanchenko and N. G. Lebedev, Phys. Solid State 49, 189 (2007).

    ADS  Google Scholar 

  13. A. V. Silant’ev, Russ. Phys. J. 60, 978 (2017).

    Google Scholar 

  14. A. V. Silant’ev, Phys. Solid State 61, 263 (2019).

    ADS  Google Scholar 

  15. A. V. Silant’ev, Phys. Solid State 62, 542 (2020).

    ADS  Google Scholar 

  16. A. V. Silant’ev, Russ. Phys. J. 62, 925 (2019).

    Google Scholar 

  17. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg., Fiz.-Mat. Nauki, No. 2, 164 (2015).

    Google Scholar 

  18. A. V. Silant’ev, Russ. Phys. J. 57, 1491 (2015).

    Google Scholar 

  19. A. V. Silant’ev, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg., Fiz.-Mat. Nauki, No. 1, 168 (2015).

    Google Scholar 

  20. A. V. Silant’ev, Russ. Phys. J. 56, 192 (2013).

    Google Scholar 

  21. G. I. Mironov and A. I. Murzashev, Phys. Solid State 53, 2393 (2011).

    ADS  Google Scholar 

  22. B. V. Lobanov and A. I. Murzashev, Phys. Solid State 59, 423 (2017).

    ADS  Google Scholar 

  23. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963).

    ADS  Google Scholar 

  24. E. Menendez-Proupin, A. Delgado, A. L. Montero-Alejo, and J. M. Garcia de la Vega, Chem. Phys. Lett. 593, 72 (2014).

    ADS  Google Scholar 

  25. J. P. Hare, H. W. Kroto, and R. Taylor, Chem. Phys. Lett. 177, 394 (1991).

    ADS  Google Scholar 

  26. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Nauka, Moscow, 1975; Plenum Press, New York, 1967).

  27. I. G. Kaplan, Symmetry of Many-Electron Systems (Nauka, Moscow, 1969; Academic, New York, 1975).

  28. R. A. Harris and L. M. Falicov, J. Chem. Phys. 51, 5034 (1969).

    ADS  Google Scholar 

  29. I. F. Torrente, K. J. Franke, and J. I. Pascual, J. Phys.: Condens. Matter 20, 184001 (2008).

    ADS  Google Scholar 

  30. S. G. Ovchinnikov and V. V. Val’kov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College Press, San Diego, 2004).

    MATH  Google Scholar 

  31. A. V. Eletskii, Phys. Usp. 43, 111 (2000).

    ADS  Google Scholar 

  32. M. Hamermesh, Group Theory and Its Application to Physical Problems (Dover, New York, 1989).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Silant’ev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silant’ev, A.V. Energy Spectrum and Optical Absorption Spectrum of Fullerene C28 within the Hubbard Model. Phys. Solid State 62, 2208–2216 (2020). https://doi.org/10.1134/S1063783420110335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110335

Keywords:

Navigation