Skip to main content
Log in

Magnetoelectric Effect in Two-Layer Composites with a Graded Magnetic Phase

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Samples of a homogeneous (x = 0, 0.1, and 0.2) and multilayer ceramics with a gradient composition (x = 0.2 → 0.1 → 0 → 0.1 → 0.2) based on solid solutions of (Ni1 − xZnx)Fe2O4 nickel–zinc ferrites have been manufactured using the thick-film technology. After sintering in a two-step mode, the gradient samples exhibited a smooth non-uniform distribution of chemical elements (Zn, Ni) over the thickness. The longitudinal (αE33) and transverse (αE31) magnetoelectric effects in two-layer PZT–nickel ferrite composites have been studied. In the absence of an external magnetostatic field, the values of magnetoelectric coefficients were negligible. The maximum value of the longitudinal magnetoelectric coefficient for composites with the gradient magnetic phase was practically two times higher than value of αE33 for homogeneous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Ma, J. Hu, Z. Li, and C.-W. Nan, Adv. Mater. 23, 1062 (2011).

    Article  Google Scholar 

  2. G. Srinivasan, Ann. Rev. Mater. Res. 40, 153 (2010).

    Article  ADS  Google Scholar 

  3. C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

    Article  ADS  Google Scholar 

  4. C. M. Leung, J.-F. Li, D. Viehland, and X. Zhuang, J. Phys. D 51, 263002 (2018).

    Article  ADS  Google Scholar 

  5. J.-M. Hu, L.-Q. Chen, and C.-W. Nan, Adv. Mater. 28, 15 (2016).

    Article  Google Scholar 

  6. T. Jia, Z. Cheng, H. Zhao, and H. Kimura, Appl. Phys. Rev. 5, 021102 (2018).

    Article  ADS  Google Scholar 

  7. A. N. Masyugin, S. S. Aplesnin, Y. Y. Loginov, and O. N. Bandurina, IOP Conf. Ser.: Mater. Sci. Eng. 822, 012025 (2020).

  8. V. N. Shut, V. M. Laletin, S. R. Syrtsov, V. L. Trublovskii, Yu. V. Medvedeva, K. I. Yanushkevich, M. V. Bushinskii, and T. V. Petlitskaya, Phys. Solid State 60, 1744 (2018).

    Article  ADS  Google Scholar 

  9. V. M. Petrov and G. Srinivasan, Phys. Rev. B 78, 184421 (2008).

    Article  ADS  Google Scholar 

  10. J. V. Mantese, A. L. Micheli, N. W. Schubring, R. W. Hayes, G. Srinivasan, and S. P. Alpay, Appl. Phys. Lett. 87, 082503 (2005).

    Article  ADS  Google Scholar 

  11. S. K. Mandal, G. Sreenivasulu, V. M. Petrov, and G. Srinivasan, Appl. Phys. Lett. 96, 192502 (2010).

    Article  ADS  Google Scholar 

  12. S. K. Mandal, G. Sreenivasulu, V. M. Petrov, and G. Srinivasan, Phys. Rev. B 84, 014432 (2011).

    Article  ADS  Google Scholar 

  13. G. Sreenivasulu, S. K. Mandal, S. Bandekar, V. M. Petrov, and G. Srinivasan, Phys. Rev. B 84, 144426 (2011).

    Article  ADS  Google Scholar 

  14. U. Laletin, G. Sreenivasulu, V. M. Petrov, T. Garg, A. R. Kulkarni, N. Venkataramani, and G. Srinivasan, Phys. Rev. B 85, 104404 (2012).

    Article  ADS  Google Scholar 

  15. S.-C. Yang, C.-S. Park, K.-H. Cho, and S. J. Priya, J. Appl. Phys. 108, 093706 (2010).

    Article  ADS  Google Scholar 

  16. M. Li, Z. Wang, Y. Wang, J. Li, and D. Viehland, Appl. Phys. Lett. 102, 082404 (2013).

    Article  ADS  Google Scholar 

  17. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, and D. Meyners, Nat. Mater. 11, 523 (2012).

    Article  ADS  Google Scholar 

  18. E. Lage, N. O. Urs, V. Röbisch, I. Teliban, R. Knöchel, D. Meyners, J. McCord, and E. Quandt, Appl. Phys. Lett. 104, 132405 (2014).

    Article  ADS  Google Scholar 

  19. D. Xie, Y. G. Wang, and J. H. Cheng, J. Mater. Sci.: Mater. Electron. 26, 3545 (2015).

    Google Scholar 

  20. Y. Zhou, D. Maurya, Y. Yan, G. Srinivasan, E. Quandt, and S. Priya, Energy Harvest. Syst. 3, 1 (2016).

    Article  Google Scholar 

  21. V. N. Shut, C. R. Syrtsov, L. S. Lobanovskii, and K. I. Yanushkevich, Phys. Solid State 58, 1975 (2016).

    Article  ADS  Google Scholar 

  22. V. N. Shut, S. R. Syrtsov, V. L. Trublovskii, and M. Vijatovic Petrovic, Phys. Solid State 61, 1746 (2019).

    Article  ADS  Google Scholar 

  23. G. Srinivasan, V. M. Laletsin, R. Hayes, N. Puddubnaya, E. T. Rasmussen, and D. J. Fekel, Solid State Commun. 124, 373 (2002).

    Article  ADS  Google Scholar 

Download references

Funding

This work was partially supported by the Belorussian Foundation for Basic Research, project no. F20MS-026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Shut.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shut, V.N., Trublovsky, V.L., Laletin, V.M. et al. Magnetoelectric Effect in Two-Layer Composites with a Graded Magnetic Phase. Phys. Solid State 62, 2063–2069 (2020). https://doi.org/10.1134/S1063783420110323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110323

Keywords:

Navigation