Skip to main content
Log in

Quantum Mechanical Approach for Determining the Activation Energy of Surface Diffusion

  • SURFACE PHYSICS AND THIN FILMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A quantum mechanical approach was proposed to determine the activation energy of surface diffusion for copper, nickel, zinc and iron atoms adsorbed on a copper substrate during electrocrystallization for various overvoltages of the substrate. The activation energy of surface diffusion was calculated from the crystal total energy. An increase in the activation energy of surface diffusion with increasing surface potential is associated with an increase in the binding energy between the ad-atom and the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An Introduction (Springer, New York, 2003; Nauka, Moscow, 2006).

  2. Ya. E. Geguzin, Surface Diffusion and Spreading (Nauka, Moscow, 1969), p. 11 [in Russian].

    Google Scholar 

  3. C. M. Chans, C. M. Wei, and S. P. Chen, Phys. Rev. B 54, 17083 (1996).

    ADS  Google Scholar 

  4. S. Yu. Davydov and S. K. Tikhonov, Surf. Sci. 275, 137 (1992).

    ADS  Google Scholar 

  5. S. Yu. Davydov, Phys. Solid State 41, 8 (1999).

    ADS  Google Scholar 

  6. S. Yu. Davydov, Tech. Phys. Lett. 24, 937 (1998).

    ADS  Google Scholar 

  7. E. F. Shtapenko, in Proceedings of the 75th International Conference on Problems and Prospects for the Development of Railway Transport, Dnepropetrovsk,2015, p. 415.

  8. R. G. Parr and W. Yang, Density–Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  9. W. Koch and M. C. Holthausen, Chemists Guide to Density Functional Theory, 2nd ed. (Wiley–VCH, New York, 2001).

    Google Scholar 

  10. A. V. Arbuznikov, J. Struct. Chem. 48, S1 (2007).

    Google Scholar 

  11. M. K. Sabbe, M. F. Reyniersa, and K. Reuter, Catal. Sci. Technol. 2, 2010 (2012).

    Google Scholar 

  12. N. Lopez, N. Almora-Barrios, G. Carchini, P. Bloński, L. Bellarosa, R. García-Muelas, G. Novell-Leruth, and M. García-Mota, Catal. Sci. Technol. 2, 2405 (2012).

    Google Scholar 

  13. T. C. Allison and Y. Y. J. Tong, Phys. Chem. Chem. Phys. 13, 12858 (2011).

    Google Scholar 

  14. N. F. Stepanov, Quantum Mechanics and Quantum Chemistry (Mir, Moscow, 2001).

  15. K. Burke, J. Chem. Phys. 136, 150901 (2012).

    ADS  Google Scholar 

  16. A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).

  17. G. Schreckenbach, P. J. Hay, and R. L. Martin, Inorg. Chem. 37, 4442 (1998).

    Google Scholar 

  18. G. Schreckenbach, P. J. Hay, and R. L. Martin, J. Comput. Chem. 20, 70 (1999).

    Google Scholar 

  19. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    ADS  Google Scholar 

  20. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    ADS  Google Scholar 

  21. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).

    ADS  Google Scholar 

  22. D. A. Keire, Y. H. Jang, L. Li, S. Dasgupta, W. A. Goddard, and J. E. Shively, Inorg. Chem. 40, 4310 (2001).

    Google Scholar 

  23. W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).

    Google Scholar 

  24. J. Andzelm and J. Labanowski, Density Functional Methods in Chemistry (Springer, Heidelberg, 1991).

    Google Scholar 

  25. V. Yu. Buz’ko, I. V. Sukhno, A. A. Polushin, and V. T. Panyushkin, Zh. Strukt. Khim. 47, 249 (2006).

    Google Scholar 

  26. M. C. Holthausen, J. Comput. Chem. 26, 1505 (2005).

    Google Scholar 

  27. F. S Legge, G. L. Nyberg, and J. B. Peel, J. Phys. Chem. A 105, 7905 (2001).

    Google Scholar 

  28. N. E. Schultz, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A 109, 4388 (2005).

    Google Scholar 

  29. N. J. Mayhall, K. Raghavachari, P. C. Redfern, and L. A. Curtiss, J. Phys. Chem. A 113, 5170 (2009).

    Google Scholar 

  30. J. Handzlik, Chem. Phys. Lett. 469, 140 (2009).

    ADS  Google Scholar 

  31. E. A. Amin and D. G. Truhlar, J. Chem. Theory Comput. 4, 75 (2008).

    Google Scholar 

  32. J. Rogal, K. Reuter, and M. Scheffler, Phys. Rev. B 75, 205433 (2007).

    ADS  Google Scholar 

  33. S. S. Tafreshi, A. Roldan, N. Y. Dzade, and N. H. de Leeuw, Surf. Sci. 622, 1 (2014).

    ADS  Google Scholar 

  34. P. V. Serba, S. P. Miroshnichenko, and Yu. F. Blinov, Quantum Chemical Calucations in Gaussian Program (TTI YuFU, Taganrog, 2012) [in Russian].

  35. E. V. Butyrskaya, Computer Chemistry: Fundamentals of Theory and Work with the Programs GAUSSIAN and GAUSSVIEV (Solon-press, Moscow, 2011) [in Russian].

    Google Scholar 

  36. J. Foresman, Exploring Chemistry with Electronic Structure Methods (Gaussian, Inc., Wallingford, CT, 1996).

    Google Scholar 

  37. J. W. Ochterski, Thermochemistry in Gaussian (Gaussian, Inc., Wallingford, CT, 2000).

    Google Scholar 

  38. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr., J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, et al., Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford, CT, 2004).

  39. E. P. Shtapenko, V. O. Zabludovs’kii, and V. V. Titarenko, Fiz. Khim. Tverd. Tila 16, 520 (2015).

    Google Scholar 

  40. E. P. Shtapeko, V. O. Zabludovs’kii, and V. V. Dudkina, Fiz. Khim. Tverd. Tila 4, 618 (2014).

    Google Scholar 

  41. E. P. Shtapenko, V. O. Zabludovs’kii, E. O. Voronkov, and V. V. Dudkina, Fiz. Khim. Tverd. Tila 15, 34 (2014).

    Google Scholar 

  42. A. G. Naumovets, Surf. Sci. Rep. 4, 365 (1985).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tytarenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Golosova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtapenko, E.F., Tytarenko, V.V., Zabludovsky, V.A. et al. Quantum Mechanical Approach for Determining the Activation Energy of Surface Diffusion. Phys. Solid State 62, 2191–2196 (2020). https://doi.org/10.1134/S1063783420110311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110311

Keywords:

Navigation