Skip to main content
Log in

Phase Formation and Conductivity Fluctuation Investigation in Nanoparticle SnO2-Added Y3Ba5Cu8O18 ± δ Polycrystalline Superconductor

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of 0, 0.20, 0.40, 0.50, and 0.60 wt % nano-sized tin oxide (SnO2) particles on electrical conductivity fluctuation in normal and superconducting state of the Y3Ba5Cu8O18 ± δ (denoted as Y‑358) polycrystalline samples is studied. Phase formation and microstructures have been systematically examined. By increasing the content of SnO2 in YBCO matrix, X-ray diffraction technique showed slight variation in lattice parameters and overall reduction in the orthorhombicity. Scanning electron microscopy observations and the crystallite size calculation also revealed that the grain size and the average crystallite size decreased compared to the SnO2-free sample. Aslamazov–Larkin and Lawrence–Doniach prototypes were used to analyze conductivity fluctuations based on the electrical resistivity ρ(T) measurements. Superconducting transition temperatures TC and TLD have been reported. The influence of SnO2 addition on the superconducting properties indicates that with the addition of SnO2 nanoparticles into Y-358 compound, some parameters values such as zero-resistance critical temperature TC zero, coherence distance alongside the c axis at 0 K ξc(0), and super-layer length d decrease in total, while anisotropy γ, critical magnetic fields Bc1(0), Bc2(0), and critical current density Jc(0) increase in SnO2-added Y-358 specimens compared to the pure one. The reasons corresponding to these scenarios are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B 43, 130 (1991). https://link.aps.org/doi/10.1103/PhysRevB.43.130

    Article  ADS  Google Scholar 

  2. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Article  ADS  Google Scholar 

  3. C. Biagini, R. Ferone, R. Fazio, F. W. J. Hekking, and V. Tognetti, Phys. Rev. B 72, 134510 (2005).

    Article  ADS  Google Scholar 

  4. X. M. Cui, G. Q. Liu, J. Wang, Z. C. Huang, Y. T. Zhao, B. W. Tao, and Y. R. Li, Phys. C (Amsterdam, Neth.) 466, 1 (2007).

  5. S. N. Abd-Ghani, H. K. Wye, K. Ing, R. Abd-Shukor, and K. Wei, Adv. Mater. Res. 895, 105 (2014).

  6. G. Shams and M. Ranjbar, Braz. J. Phys. 49, 808 (2019).

    Article  ADS  Google Scholar 

  7. G. Shams, A. Mahmoodinezhad, and M. Ranjbar, Iran. J. Sci. Technol. Trans. A: Sci. 42, 2337 (2018).

    Article  Google Scholar 

  8. R. Teranishi, Y. Miyanaga, K. Yamada, N. Mori, M. Mukaida, M. Miura, M. Yoshizumi, T. Izumi, M. Namba, S. Awaji, and K. Watanabe, Phys. C (Amsterdam, Neth.) 470, 1246 (2010).

  9. S. Choi, G. Shin, and S. Yoo, Phys. C (Amsterdam, Neth.) 485, 154 (2013).

  10. Y. Miyanaga, R. Teranishi, K. Yamada, N. Mori, M. Mukaida, T. Kiss, M. Inoue, K. Nakaoka, M. Yoshizumi, T. Izumi, Y. Shiohara, M. Nanba, S. Awaji, and K. Watanabe, Phys. C (Amsterdam, Neth.) 469, 1418 (2009).

  11. Z. He, T. Habisreuther, G. Bruchlos, D. Litzkendorf, and W. Gawalek, Phys. C (Amsterdam, Neth.) 356, 277 (2001).

  12. N. N. Mohd Yusuf, M. M. Awang Kechik, H. Baqiah, C. Soo Kien, L. Kean Pah, A. H. Shaari, W. N. W. Wan Jusoh, S. I. Abd-Sukor, M. Mousa Dihom, Z. A. Talib, and R. Abd-Sukor, Materials 12, 92 (2019).

    Article  ADS  Google Scholar 

  13. L. Aslamazov and A. Larkin, in 30 Years of the Landau Institute—Selected Papers (World Scientific, Singapore, 1996), p. 23.

    Google Scholar 

  14. P. Pureur, R. Menegotto-Costa, P. Rodrigues, Jr., J. Kunzler, J. Schaf, L. Ghivelder, J. Campa, and I. Rasines, Phys. C (Amsterdam, Neth.) 235240, 1939 (1994).

  15. X. Tang, Q. Liu, J. Wang, and H. Chan, Appl. Phys. A 96, 945 (2009).

    Article  ADS  Google Scholar 

  16. K. Yasukochi, T. Ogasawara, Y. Kubota, and J. Maryuama, in Proceedings of the 12th International Conference on Low Temperature Physics (Academic, Kyoto, Japan, 1970), p. 178.

  17. A. A. Yusuf, A. Yahya, N. A. Khan, F. M. Salleh, E. Marsom, and N. Huda, Phys. C (Amsterdam, Neth.) 471, 363 (2011).

  18. N. A. Khan, N. Hassan, M. Irfan, and T. Firdous, Phys. C (Amsterdam, Neth.) 405, 1541 (2010).

  19. Y. Slimani, E. Hannachi, M. K. Ben Salem, A. Hamrita, M. Ben Salem, and F. B. Azzouz, J. Supercond. Novel Magn. 28, 3001 (2015).

    Article  Google Scholar 

  20. M. Farbod and M. R. Batvandi, Phys. C (Amsterdam, Neth.) 471, 112 (2011).

  21. U. Holzwarth and N. Gibson, Nat. Nanotechnol. 6, 534 (2011).

    Article  ADS  Google Scholar 

  22. R. Teranishi, Y. Miyanaga, K. Yamada, N. Mori, M. Mukaida, M. Inoue, T. Kiss, M. Miura, M. Yoshizumi, T. Izumi, M. Namba, S. Awaji, and K. Watanabe, J. Phys.: Conf. Ser. 234 (2) (2010).

  23. P. Udomsamuthirun, T. Kruaehong, T. Nilkamjon, and S. Ratreng, J. Supercond. Novel Magn. 23, 1377 (2010).

    Article  Google Scholar 

  24. U. Topal, M. Akdogan, and H. Ozkan, J. Supercond. Novel Magn. 24, 2099 (2011).

    Article  Google Scholar 

  25. U. Topal and M. Akdogan, J. Supercond. Novel Magn. 25, 239 (2012).

    Article  Google Scholar 

  26. A. O. Ayaş, A. Ekicibil, S. K. Çetin, A. Coşkun, A. O. Er, Y. Ufuktepe, T. Fıkrat, and K. Kıymaç, J. Supercond. Nov. Magn. 24, 2243 (2011).

    Article  Google Scholar 

  27. A. Aliabadi, Y. Akhavan Farshchi, and M. Akhavan, Phys. C (Amsterdam, Neth.) 469, 2012 (2009).

  28. A. Tavana and M. Akhavan, Eur. Phys. J. B 73, 79 (2010).

    Article  ADS  Google Scholar 

  29. Y. Slimani, E. Hannachi, M. Ben Salem, A. Hamrita, A. Varilci, W. Dachraoui, M. Ben Salem, and F. Ben Azzouz, Phys. B (Amsterdam, Neth.) 450, 7 (2014).

  30. A. Kulpa, A. Chaklader, N. Osborne, G. Roemer, B. Sullivan, and D. Williams, Solid State Commun. 71, 265 (1989).

    Article  ADS  Google Scholar 

  31. Y. Xu, M. Suenaga, J. Tafto, R. Sabatini, A. Moodenbaugh, and P. Zolliker, Phys. Rev. B 39, 6667 (1989).

    Article  ADS  Google Scholar 

  32. L. Liu, C. Dong, J. Zhang, and J. Li, Phys. C (Amsterdam, Neth.) 377, 348 (2002).

  33. A. Ramli, A. H. Shaari, H. Baqiah, C. S. Kean, and M. M. A. Kechik, and Z. A. Talib, J. Rare Earths 34, 895 (2016).

    Article  Google Scholar 

  34. A. H. Salama, M. El-Hofy, Y. S. Rammah, and M. Elkhatib, Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 045013 (2015).

  35. M. Takahashi, S. Ohkido, and K. Wakita, Superconductor, 263 (2010).

  36. R. Giri, V. Awana, H. Singh, R. Tiwari, O. Srivastava, A. Gupta, B. Kumaraswamy, and H. Kishan, Phys. C (Amsterdam, Neth.) 419, 101 (2005).

  37. A. Ekicibil, S. K. Cetin, A. O. Ayaş, A. Coşkun, T. Fırat, and K. Kıymac, Solid State Sci. 13, 1954 (2011).

    Article  ADS  Google Scholar 

  38. M. M. Dihom, A. H. Shaari, H. Baqiah, N. M. Al-Hada, C. S. Kien, R. S. Azis, M. M. A. Kechik, Z. A. Talib, and R. Abd-Shukor, Results Phys. 7, 407 (2017).

    Article  ADS  Google Scholar 

  39. P. Vanderbemden, A. Bradley, R. Doyle, W. Lo, D. Astill, D. Cardwell, and A. Campbell, Phys. C (Amsterdam, Neth.) 302, 257 (1998).

  40. I. Bouchoucha, F. B. Azzouz, and M. B. Salem, J. Supercond. Novel Magn. 24, 345 (2011).

    Article  Google Scholar 

  41. A. A. Aly, N. Mohammed, R. Awad, H. Motaweh, and D. E. S. Bakeer, J. Supercond. Novel Magn. 25, 2281 (2012).

    Article  Google Scholar 

  42. G. Shams, J. Cochrane, and G. Russell, Phys. C (Amsterdam, Neth.) 363, 243 (2001). https://doi.org/10.1016/S0921-4534(01)00938-8

  43. M. Sahoo and D. Behera, J. Mater. Sci. Eng. 1, 115 (2012).

    Google Scholar 

  44. J. R. Rojas, A. R. Jurelo, R. M. Costa, L. M. Ferreira, P. Pureur, M. T. D. Orlando, P. Prieto, and G. Nieva, Phys. C (Amsterdam, Neth.) 341, 1911 (2000).

  45. P. Mayorga, D. Téllez, Q. Madueno, J. Alfonso, and J. Roa-Rojas, Braz. J. Phys. 36 (3B), 1084 (2006).

    Article  ADS  Google Scholar 

  46. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  ADS  Google Scholar 

  47. J. Roa-Rojas, D. Téllez, and M. Rojas Sarmiento, Braz. J. Phys. 36 (3B), 1105 (2006).

    Article  ADS  Google Scholar 

  48. A. Kujur and D. Behera, Thin Solid Films 520, 2195 (2012).

    Article  ADS  Google Scholar 

  49. S. Falahati, F. Saeb, and V. Daadmehr, Iran. J. Phys. Res. 9, 43 (2009).

    Google Scholar 

  50. X. L. Wang, J. Horvat, G. D. Gu, K. K. Uprety, H. K. Liu, and S. X. Dou, Phys. C (Amsterdam, Neth.) 337, 221 (2000).

Download references

ACKNOWLEDGMENTS

The authors are grateful to Mr Fatemi, for his help during the preparation of the samples and also Mr Kowsari and Mr Nowroozi from Islamic Azad University–Shiraz branch and Mr Mahmoodinezhad from the Brandenburg University of Technology, Germany for their help and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Shams.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaedsharafi, N., Shams, G. & Soltani, Z. Phase Formation and Conductivity Fluctuation Investigation in Nanoparticle SnO2-Added Y3Ba5Cu8O18 ± δ Polycrystalline Superconductor. Phys. Solid State 62, 2154–2166 (2020). https://doi.org/10.1134/S1063783420110141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110141

Keywords:

Navigation