Skip to main content
Log in

Changes in the Defective Structure of the Surface of a Fe77Ni1Si9B13 Metal Glass Ribbon under the Influence of Hydrostatic Pressure and Isothermal Annealing

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The features and generality of the effect of hydrostatic pressure and annealing on the surface relief of the contact and non-contact side of the Fe77Ni1Si9B13 metal glass ribbon are revealed. The relationship between transformation of the ribbon surface inhomogeneities under these effects and possible formation of nanocrystalline regions are analyzed. We found that the evolution of the surface inhomogeneities at the contact side of the ribbon after annealing procedure leads to appearing of discrete-sized fractions in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. The removal of void formations of structurally determined free volume (SFV) caused, finally, partial or total crystallization changing topological and structural parameters of the amorphous material, especially near its surface.

REFERENCES

  1. A. V. Gavrilyuk, A. A. Gavrilyuk, N. P. Kovaleva, A. Yu. Mokhovikov, A. L. Semenov, and B. V. Gavrilyuk, Phys. Met. Metallogr. 101, 434 (2006).

    Article  ADS  Google Scholar 

  2. G. E. Abrosimova, A. S. Aronin, S. V. Dobatkin, I. I. Zver’kova, D. V. Matveev, O. G. Rybchenko, and E. V. Tat’yanin, Phys. Solid State 49, 1034 (2007).

    Article  ADS  Google Scholar 

  3. K. Sudzuki, Kh. Fudzimori, and K. Khasimoto, Amorphous Metals (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  4. Y. I. Jang, J. Kim, and D. H. Shim, J. Mater. Sci. Eng. B 78, 113 (2000).

    Article  Google Scholar 

  5. N. Iturriza and M. Nazmunnahar, J. Nanosci. Nanotechnol. 12, 5071 (2012).

    Article  Google Scholar 

  6. A. U. Pietrusiewicz and P. Nabialek, Acta Phys. Polon. A 126, 1 (2014).

    Google Scholar 

  7. A. Yu. Vinogradov and V. A. Khonik, Philos. Mag. 84, 21 (2004).

    Article  Google Scholar 

  8. D. Turnbull and M. H. Cohen, J. Chem. Phys. 34, 1 (1961).

    Article  Google Scholar 

  9. V. I. Betekhtin, E. L. Gyulikhandanov, A. G. Kadomtsev, A. Yu. Kipyatkova, and O. V. Tolochko, Phys. Solid State 42, 1460 (2000).

    Article  ADS  Google Scholar 

  10. M. L. Falk and J. S. Langer, Phys. Rev. E 57, 6 (1998).

    Article  Google Scholar 

  11. W. L. Johnson, J. Lu, and M. D. Demetriou, Intermetallics 10, 1039 (2002).

    Article  Google Scholar 

  12. L. Anand and C. Su, J. Mech. Phys. Solids 53, 6 (2005).

    Google Scholar 

  13. A. Lindsay Greer, Met. Glas. Sci. 267, 5206 (1995).

    Google Scholar 

  14. J.-Z. Jiang, D. Hofmann, D. J. Jarvis, and H.-J. Fecht, Adv. Eng. Mater. 17, 6 (2015).

    Google Scholar 

  15. F. Spaepen, Acta Met. 25, 4 (1977).

    Article  Google Scholar 

  16. V. I. Betekhtin, A. M. Glezer, A. G. Kadomtsev, and A. Yu. Kipyatkova, Phys. Solid State 40, 74 (1998).

    Article  ADS  Google Scholar 

  17. V. I. Betekhtin, A. G. Kadomtsev, and O. V. Tolochko, Phys. Solid State 43, 1892 (2001).

    Article  ADS  Google Scholar 

  18. V. E. Korsukov, A. V. Ankudinov, V. I. Betekhtin, P. N. Butenko, V. N. Verbitskii, V. L. Gilyarov, M. M. Korsukova, M. V. Narykova, and B. A. Obidov, Phys. Solid State 61, 585 (2019)).

    Article  ADS  Google Scholar 

  19. V. I. Betekhtin, P. N. Butenko, A. G. Kadomtsev, V. E. Korsukov, M. M. Korsukova, B. A. Obidov, and O. V. Tolochko, Phys. Solid State 49, 2223 (2007).

    Article  ADS  Google Scholar 

  20. V. Korsukov, P. Butenko, and A. Chmel, Eur. Phys. Lett. 90, 26007 (2010).

    ADS  Google Scholar 

  21. G. E. Abrosimova, A. S. Aronin, and E. Yu. Ignat’eva, Phys. Solid State 48, 122 (2006).

    ADS  Google Scholar 

  22. V. I. Betekhtin, P. N. Butenko, V. L. Hilarov, A. G. Kadomtsev, V. E. Korsukov, M. M. Korsukova, and B. A. Obidov, Phys. Solid State 50, 1875 (2008).

    Article  ADS  Google Scholar 

  23. A. M. Glezer, R. V. Sundeev, and A. V. Shalimova, Rev. Adv. Mater. Sci. 54, 93 (2018).

    Article  Google Scholar 

  24. J. Diao, B. Chen, Q. Luo, W. Lin, X. Liu, and J. Shen, J. Mater. Res. 32, 10 (2017).

    Article  Google Scholar 

  25. V. Ya. Shur, S. A. Negashev, A. L. Subbotin, D. V. Pelegov, E. A. Borisova, E. B. Blankova, and S. Trolier-McKinstry, Phys. Solid State 41, 274 (1999).

    Article  ADS  Google Scholar 

  26. G. E. Abrosimova and A. S. Aronin, Phys. Solid State 59, 2248 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Butenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butenko, P.N., Betekhtin, V.I., Korsukov, V.E. et al. Changes in the Defective Structure of the Surface of a Fe77Ni1Si9B13 Metal Glass Ribbon under the Influence of Hydrostatic Pressure and Isothermal Annealing. Phys. Solid State 62, 1998–2003 (2020). https://doi.org/10.1134/S1063783420110104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110104

Keywords:

Navigation