Skip to main content
Log in

Functionalization of Individual Multi-Wall Carbon Nanotubes during Irradiation and Annealing

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract—

The structure of individual multi-wall carbon nanotubes exposed to irradiation by a argon ions and electron flux, as well as subsequent heat processing in an inert medium has been studied using transmission electron microscopy and x-ray photoelectron spectroscopy. It has been shown that irradiation with argon ions and electrons leads to the formation of defects in the structure of carbon nanotubes, changes in the interlayer distance in the walls of nanotubes, and the fixing of functional oxygen-containing groups on their surface. Annealing of pre-irradiated nanotubes in an inert atmosphere causes a partial restoration of the multi-wall carbon nanotube structure. At the same time, in the case of irradiation with argon ions, the nanotube structure is being recovered and the oxygen concentration decreases. In the case of electron irradiation after annealing, extended multi-vacancy defects occur, on which functional groups containing a double chemical bond of carbon and oxygen (C=O) are formed. Using calculations carried out within the framework of density functional theory, the coupling energy values and optimized geometry for various configurations of vacancy clusters in the graphene plane have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. S. Ivanchenko and N. G. Lebedev, Phys. Solid State 51, 2421 (2009).

    ADS  Google Scholar 

  2. V. V. Bolotov, V. E. Kan, P. M. Korusenko, S. N. Ne-ov, S. N. Povoroznyuk, I. V. Ponomareva, V. E. Roslikov, Yu. A. Sten’kin, R. V. Shelyagin, and E. V. Knyazev, Phys. Solid State 54, 166 (2012).

    ADS  Google Scholar 

  3. I. V. Zaporotskova, N. P. Boroznina, Yu. N. Parkhomenko, and L. V. Kozhitov, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 5, 21 (2017).

    Google Scholar 

  4. V. V. Bolotov, P. M. Korusenko, S. N. Nesov, S. N. Povoroznyuk, and E. V. Knyazev, Nucl. Instrum. Methods Phys. Res., Sect. B 337, 1 (2014).

    Google Scholar 

  5. Shuang-Xi Xue, Qin-Tao Li, Xian-Rui Zhao, Qin-Yi Shi, Zhi-Gang Li, and Yan-Ping Liu, J. Nanomater. 2014, 313095 (2014).

    Google Scholar 

  6. O. Lehtinen, T. Nikitin, A. V. Krasheninnikov, L. Sun, F. Banhart, L. Khriachtchev, and J. Keinonen, New J. Phys. 13, 073004 (2011).

    ADS  Google Scholar 

  7. R. Kumari, F. Singh, B. S. Yadav, R. K. Kotnala, K. Rao Peta, P. K. Tyagi, S. Kumar, and N. K. Puri, Nucl. Instrum. Methods Phys. Res., Sect. B 412, 115 (2017).

    Google Scholar 

  8. A. H. R. Palser, Phys. Chem. Chem. Phys. 1, 4459 (1999).

    Google Scholar 

  9. V. V. Bolotov, V. A. Volodin, G. N. Kamayev, V. Ye. Kan, Ye. V. Knyazev, and V. A. Sachkov, AIP Conf. Proc. 2007, 040002 (2018). https://doi.org/10.1063/1.5051929

  10. A. Figaro, J. Pourchez, D. Boudard, V. Forest, S. Berhanu, J.-M. Tulliani, J.-P. Lecompte, M. Cottier, D. Bernache-Assollant, and Ph. Grosseau, J. Nanopart. Res. 17, 194 (2015).

    ADS  Google Scholar 

  11. E. V. Knyazev, V. V. Bolotov, K. E. Ivlev, S. N. Povoroznyuk, V. E. Kan, and D. V. Sokolov, Phys. Solid State 61, 433 (2019).

    ADS  Google Scholar 

  12. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 100, 136406 (2008).

    ADS  Google Scholar 

  13. Z. Xu, L. Xu, F. Fang, H. Gao, and W. Li, Nucl. Instrum. Methods Phys. Res., Sect. B 307, 203 (2013).

    Google Scholar 

  14. J. Y. Huang, S. Chen, Z. F. Ren, Z. Q. Wang, D. Z. Wang, M. Vaziri, Z. Suo, G. Chen, and M. S. Dresselhaus, Phys. Rev. Lett. 97, 075501 (2006).

    ADS  Google Scholar 

  15. A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, and R. M. Niemien, Chem. Phys. Lett. 418, 132 (2006).

    ADS  Google Scholar 

  16. Ch. Jin, K. Suenaga, and S. Iijima, Nano Lett. 8, 1127 (2008).

    ADS  Google Scholar 

  17. J. Y. Huang, S. Chen, Z. F. Ren, Z. Q. Wang, D. Z. Wang, M. Vaziri, Z. Suo, G. Chen, and M. S. Dresselhaus, Phys. Rev. Lett. 97, 075501 (2006).

    ADS  Google Scholar 

  18. K. Bogdanov, A. Fedorov, V. Osipov, T. Enoki, K. Takai, T. Hayashi, V. Ermakov, S. Moshkalev, and A. Baranov, Carbon 73, 78 (2014).

    Google Scholar 

  19. S. N. Nesov, P. M. Korusenko, V. V. Bolotov, S. N. Povoroznyuk, and D. A. Smirnov, Phys. Solid State 59, 2030 (2017).

    ADS  Google Scholar 

  20. L. G. Bulusheva, S. G. Stolyarova, A. L. Chuvilin, Y. V. Shubin, I. P. Asanov, A. M. Sorokin, and A. V. Okotrub, Nanotechnology 29, 134001 (2018).

    ADS  Google Scholar 

  21. P. Bazylewski, D. W. Boukhvalov, A. I. Kukharenko, E. Z. Kurmaev, A. Hunt, A. Moewes, and G. S. Chang, RSC Adv. 5, 75600 (2015). https://doi.org/10.1039/c5ra12893e

  22. I. Mazov, V. L. Kuznetsov, I. A. Simonova, A. I. Stadnichenko, A. V. Ishchenko, A. I. Romanenko, E. N. Tkachev, and O. B. Anikeeva, Appl. Surf. Sci. 258, 6272 (2012).

    ADS  Google Scholar 

  23. D. A. Usanov, A. V. Skripal’, and A. V. Romanov, Tech. Phys. 59, 873 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Yu.A. Stenkin, M.V. Trenikhin, and G.N. Kamaev for the synthesis of the multi-wall carbon nanotubes and assistance in conducting experiments.

Funding

The equipment of the Omsk regional center for collective use of SB RAS was used in the work. The work was performed according to the state task of the ONC SB RAS in accordance with the program of the FNI GAN for 2013–2020 (the number of the state registration of the project in the EGISU N-IOKTR system is AAAA-A17-117041210227-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Knyazev.

Ethics declarations

The authors state that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolotov, V.V., Knyazev, E.V., Korusenko, P.M. et al. Functionalization of Individual Multi-Wall Carbon Nanotubes during Irradiation and Annealing. Phys. Solid State 62, 2173–2183 (2020). https://doi.org/10.1134/S1063783420110098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110098

Keywords:

Navigation