Skip to main content
Log in

Prebreakdown State and Its Diagnostics in Multilayer 0.55Pb–Mg1/3Nb2/3O3–0.45PbSc1/2Nb1/2O3 Compounds

  • DIELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The determination of the breakdown voltage and the diagnostics of the prebreakdown state of a material is a topical problem of studying characteristics of insulating materials and structures based on them when applying an external electric field. The new effective method of the diagnostics of the prebreakdown state of multilayer structures (MLC) based on the ferroelectric–relaxor 0.55Pb–Mg1/3Nb2/3O3–0.45-PbSc1/2Nb1/2O3 (PMN–PSN) is considered. The method is based on an analysis of the dynamics of changing the MLC surface temperature during applying an external electric field. A series of the MLC samples has been tested under action of electric field E = 10–120 kV/cm and the ambient temperature from room temperature to 80°C. The critical electric field that characterizes the prebreakdown state of the PMN–PSN multilayer structures and, correspondingly, restricts the upper limit of operating voltages for the electrocaloric applications has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. I. Skanavi, Physics of Insulators (Strong Field Region) (Fizmatlit, Moscow, 1958) [in Russian].

    Google Scholar 

  2. R. P. Bogoroditskii, Yu. M. Volokobinskii, A. A. Vorob’ev, and B. M. Tareev, Theory of Dielectrics (Energiya, Moscow, Leningrad, 1965) [in Russian].

    Google Scholar 

  3. G. A. Vorob’ev, Yu. P. Pokholkov, Yu. D. Korolev, and V. I. Merkulov, Physics of Dielectrics (Strong Fields Range) (Tomsk. Politekh. Univ., Tomsk, 2011) [in Russian].

    Google Scholar 

  4. N. P. Bogoroditskii, V. V. Pasynkov, and B. M. Tareev, Electrotechnical Materials (Energoatomizdat, Leningrad, 1985) [in Russian].

    Google Scholar 

  5. C. Neusel and G. A. Schneider, J. Mech. Phys. Solids 63, 201 (2014).

    Article  ADS  Google Scholar 

  6. A. V. Livshits, Syst. Methods. Technol. 2 (22), 84 (2014).

    Google Scholar 

  7. P. H. F. Morshuis, IEEE Trans. Dielectr. Electr. Insul. 12, 905 (2005).

    Article  Google Scholar 

  8. M. Refaey, A. A. Hossam-Eldin, and T. Negm, in Proceedings of the 16th International Middle-East Power Systems Conference MEPCON (IEEE, 2016).

  9. P.-K. Fischer and G. A. Schneider, J. Eur. Ceram. Soc. 38, 4476 (2018).

    Article  Google Scholar 

  10. G. A. Vorob’ ev, Sov. Phys. Solid State 18, 110 (1976).

  11. Y. Liu, J. F. Scott, and B. Dkhil, Appl. Phys. Rev. 3, 031102 (2016).

    Article  ADS  Google Scholar 

  12. S. Pandya, J. Wilbur, J. Kim, R. Gao, A. Dasgupta, C. Dames, and L. W. Martin, Nat. Mater. 17, 432 (2018).

    Article  ADS  Google Scholar 

  13. X. Moya and N. D. Mathur, APL Mater. 4, 063701 (2016).

    Article  ADS  Google Scholar 

  14. Electrocaloric Materials: New Generation of Cooler, Ed. by T.Correia and Q. Zhang (Springer, Berlin, 2013).

    Google Scholar 

  15. X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).

    Article  ADS  Google Scholar 

  16. A. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science (Washington, DC, U. S.) 311, 1270 (2006).

    Article  ADS  Google Scholar 

  17. G. Yu. Sotnikova, G. A. Gavrilov, A. A. Kapralov, and E. P. Smirnova, Tech. Phys. Lett. 45, 963 (2019).

    Article  ADS  Google Scholar 

  18. E. P. Smirnova, G. Yu. Sotnikova, N. V. Zaitseva, A. A. Kapralov, G. A. Gavrilov, and A. V. Sotnikov, Phys. Solid State 60, 2006 (2018).

    Article  ADS  Google Scholar 

  19. S. Kar-Narayan and N. D. Mathur, Appl. Phys. Lett. 95, 242903 (2009).

    Article  ADS  Google Scholar 

  20. N. A. S. Smith, M. K. Rokosz, and T. M. Correia, J. Appl. Phys. 116, 044511 (2014).

    Article  ADS  Google Scholar 

  21. S. Crossley, J. R. McGinnigle, S. Kar-Narayan, and N. D. Mathur, Appl. Phys. Lett. 104, 082909 (2014).

    Article  ADS  Google Scholar 

  22. G. Yu. Sotnikova, G. A. Gavrilov, A. A. Kapralov, K. L. Muratikov, and E. P. Smirnova, Rev. Sci. Instrum. 91, 015119 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-02-00394.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Yu. Sotnikova or G. A. Gavrilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikova, G.Y., Gavrilov, G.A., Kapralov, A.A. et al. Prebreakdown State and Its Diagnostics in Multilayer 0.55Pb–Mg1/3Nb2/3O3–0.45PbSc1/2Nb1/2O3 Compounds. Phys. Solid State 62, 1830–1835 (2020). https://doi.org/10.1134/S1063783420100315

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100315

Keywords:

Navigation