Skip to main content
Log in

Pressure Effect Study on the Electronic and Optical Properties of BxIn1 – xAs Alloys Using DFT Calculation

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In order to extract structural and electronic properties of BxIn1 – xAs ternary alloys and enrich the database of materials based on boron and indium, we have used full-potential augmented plane wave (FP-LAPW) method through the density function theory (DFT) and within generalized gradient approximation (GGA), local density approximation (LDA), and Tran–Blaha modified Becke–Johnson approximation (TB–mBJ). We have optimized the cohesive energy of our binary compound and ternary alloys versus volume of the unit cell firstly, and we have found that the optimum volume, lattice parameter, and the bulk modulus vary for different boron concentrations. Using DFT–mBJ calculations, we found that InAs possess direct band-gap energy and an indirect gap semiconductor for BAs and B0.75In0.25As. However, B0.25In0.75As and B0.5In0.5As ternary alloys have a metallic and semi metallic characters, respectively. We also studied the optical properties of our BAs and InAs binary and B0.75In0.25As ternary semiconductors and their behaviors are also investigated under the application of hydrostatic pressure in a range of 0 to 25 GPa. In summary, we conclude that the incorporation of boron atom in InAs increase its hardness and affects the band-gap energy considerably, and therefore provides a novel research perspective. We note that InAs binary compound loses its semiconductor character and becomes semi-metal at 5 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. N. Chimot, J. Even, H. Folliot, and S. Loualiche, Phys. B (Amsterdam, Neth.) 364, 263 (2005).

  2. F. El Haj Hassan and H. Akbarzadeh, Mater. Sci. Eng. B 121, 171 (2005).

    Article  Google Scholar 

  3. M. Guemou, B. Bouhafs, A. Abdiche, R. Khenata, Y. Al Douri, and S. Bin Omran, Phys. B (Amsterdam, Neth.) 407, 1292 (2012).

  4. R. Ahmed, S. J. Hashemifar, H. Akbarzadeh, M. Ahmed, and F. Aleem, Comput. Mater. Sci. 39, 580 (2007).

    Article  Google Scholar 

  5. M. Ferhat, A. Zaoui, M. Certier, and H. Aourag, Phys. B (Amsterdam, Neth.) 252, 229 (1998).

  6. R. Bhat, P. S. Dutta, and S. Guha, J. Cryst. Growth 310, 1910 (2008).

    Article  ADS  Google Scholar 

  7. V. N. Brudnyi, N. G. Kolin, and A. I. Potapov, Semiconductors 37, 390 (2003).

    Article  ADS  Google Scholar 

  8. J. A. Perri, S. Laplaca, and B. Post, Acta Crystallogr. 11, 310 (1958).

    Article  Google Scholar 

  9. T. L. Chu and A. E. Hyslop, J. Appl. Phys. 43, 276 (1972).

    Article  ADS  Google Scholar 

  10. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbital Program for Calculating Crystal Properties (Vienna Univ. Technol., Vienna, Austria, 2001).

  11. F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1947).

    Article  ADS  Google Scholar 

  12. Y. Yan, Q. Wang, W. Shu, Z. Jia, X. Ren, X. Zhang, and Y. Huang, Phys. B (Amsterdam, Neth.) 407, 4570 (2012).

  13. R. W. G. Wyckoff, Crystal Structures, 2nd ed. (Krieger, Malabar, 1986).

    MATH  Google Scholar 

  14. K. H. Hellwege and O. Madelung, LandoltBörnstein, New Series, Group III (Springer, Berlin, 1982), Vol. 17, Pt. A.

  15. M. Vubcevich, Phys. Status Solidi B 54, 219 (1972).

    Article  ADS  Google Scholar 

  16. H. Meradji, S. Labidi, S. Ghemid, S. Drablia, and B. Bouhafs, Phys. Proc. 2, 933 (2009).

    Article  ADS  Google Scholar 

  17. H. Bross and R. Bader, Phys. Status Solidi B 191, 369 (1995).

    Article  ADS  Google Scholar 

  18. O. Madelung, Landolt-Börnstein, New Series, Group III (Springer, Berlin, 1982), Vol. 17a.

  19. R. Wentzcovitch, M. L. Cohen, and P. K. Lam, Phys. Rev. B 36, 6058 (1987).

    Article  ADS  Google Scholar 

  20. M. Briki, M. Abdelouhab, A. Zaoui, and M. Ferhat, Superlatt. Microstruct. 45, 80 (2009).

    Article  ADS  Google Scholar 

  21. N. Tayebi, K. Benkabou, and F. Z. Aoumeur-Benkabou, Phys. B (Amsterdam, Neth.) 407, 2739 (2012).

  22. P. P. Paskov, J. Appl. Phys. 81, 1890 (1997).

    Article  ADS  Google Scholar 

  23. T. Hofmann, M. Schubert, G. Leibiger, and V. Gottschalch, Appl. Phys. Lett. 90, 182110 (2007).

    Article  ADS  Google Scholar 

  24. S. Adachi, J. Appl. Phys. 61, 4869 (1987).

    Article  ADS  Google Scholar 

  25. H. Baaziz, Z. Charifi, and N. Bouarissa, Mater. Chem. Phys. 68, 197 (2001).

    Article  Google Scholar 

  26. M. Merabet, D. Rached, R. Khenata, S. Benalia, B. Abidri, N. Bettahar, and S. BinOmran, Phys. B (Amsterdam, Neth.) 406, 3247 (2011).

  27. A. Zaoui and F. El Haj Hassan, J. Phys.: Condens. Matter 13, 253 (2001).

    ADS  Google Scholar 

  28. V. M. Daniel’tsev, N. V. Vostokov, Yu. N. Drozdov, M. N. Drozdov, A. V. Murel, D. A. Pryakhin, O. I. Khrykin, and V. I. Shashkin, J. Surf. Invest. 2, 514 (2008).

    Article  Google Scholar 

  29. M. Rabah, B. Abbar, Y. Al-Douri, B. Bouhafs, and B. Sahraoui, Mater. Sci. Eng. B 100, 163 (2003).

    Article  Google Scholar 

  30. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  ADS  Google Scholar 

  31. P. J. L. Hervé and L. K. J. Vandamme, J. Appl. Phys. 77, 5476 (1995).

    Article  ADS  Google Scholar 

  32. N. M. Ravindra, S. Auluck, and V. K. Srivastava, Phys. Status Solidi B 93, 155 (1979).

    Article  ADS  Google Scholar 

  33. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  ADS  Google Scholar 

  34. M. Othman, E. Kasap, and N. Korozlu, J. Alloys Compd. 496, 230 (2010).

    Article  Google Scholar 

  35. N. Amrane and M. Benkraouda. J. Adv. Phys. 13, 5041 (2017).

    Article  Google Scholar 

  36. M. I. Ziane, Z. Bensaad, B. Labdelli, and H. Bennacer, Sens. Transducers 27 (Spec. Iss.), 374 (2014).

    Google Scholar 

  37. R. Wentzcovitch, M. L. Cohen, and P. K. Lam, Phys. Rev. B 36, 6058 (1987).

    Article  ADS  Google Scholar 

  38. H. Meradji, S. Labidi, S. Ghemid, S. Drablia, and B. Bouhafs, Phys. Proc. 2, 933 (2009).

    Article  ADS  Google Scholar 

  39. S. Adachi, Properties of Group IV, III–V, and II–VI Semiconductors (Wiley, New York, 2005), Chap. 2.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guemou.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guemou, M., Khelil, M. & Abdiche, A. Pressure Effect Study on the Electronic and Optical Properties of BxIn1 – xAs Alloys Using DFT Calculation. Phys. Solid State 62, 1815–1829 (2020). https://doi.org/10.1134/S106378342010011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342010011X

Keywords:

Navigation