Skip to main content
Log in

Frequency and Speed of Action of a Spin Valve with Planar Layer Anisotropy

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dynamics of the magnetization vector of the free layer of a layered spin-valve structure has been simulated. As materials for a free and fixed layer, we have considered six magnetically soft ferromagnets with planar anisotropy. The types of magnetization dynamics being of practical interest for MRAM and HMDD (magnetization vector switching), STNO (stable precession of the magnetization vector), and the PSL base element (magnetization vector switching with two probable results) are allocated. The ranges of currents and fields corresponding to these operating modes of a spin valve are calculated. The numerical calculations of the switching time showed that of the materials considered, the most suitable for a MRAM cell is the Co80Gd20 alloy and Fe60Co20B20 for the HMDD reading head. As a result of calculating the frequency of precession, it was concluded that the Fe60Co20B20 alloy is optimal in manufacturing STNO ferromagnetic layers. For PSL implementation, the best switching characteristics were obtained for Co93Gd7 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).

    Article  ADS  Google Scholar 

  2. N. V. Ostrovskaya, V. A. Skidanov, and Iu. A. Iusipova, Solid State Phenom. 233–234, 431 (2015).

    Article  Google Scholar 

  3. C. Chappert, A. Fert, and F. Nguyen Van Dau, Nat. Mater. 6, 813 (2007).

    Article  ADS  Google Scholar 

  4. J. J. Nowak, R. P. Robertazzi, J. Z. Sun, G. Hu, J. H. Park, J. H. Lee, A. J. Annunziata, G. P. Lauer, C. Kothandaraman, E. J. O’Sullivan, P. L. Trouilloud, Y. Kim, and D. C. Worledge, IEEE Magn. Lett. 7, 3102604 (2016).

    Article  Google Scholar 

  5. Yimin Guo, US Patent No US0151614A1 (2008).

  6. Ch.-Y. You, J. Magn. 14, 168 (2009).

    Article  Google Scholar 

  7. Z. Zeng, G. Finocchio, and H. Jiang, Nanoscale 5, 2219 (2013).

    Article  ADS  Google Scholar 

  8. N. Locatelli, R. Lebrun, V. V. Naletov, A. Hamadeh, G. De Loubens, O. Klein, J. Grollier, and V. Cros, IEEE Trans. Magn. 51, 4300206 (2015).

    Article  Google Scholar 

  9. S. Datta, S. Salahuddin, and B. Behin-Aein, Appl. Phys. Lett. 101, 252411 (2012).

    Article  ADS  Google Scholar 

  10. B. Behin-Aein, V. Diep, and S. Datta, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  11. K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta, Phys. Rev. X 7, 031014 (2017).

    Google Scholar 

  12. B. Sutton, K. Y. Camsari, B. Behin-Aein, and S. Datta, Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  13. Y. Shim, A. Jaiswal, and K. Roy, J. Appl. Phys. 121, 193902 (2017).

    Article  ADS  Google Scholar 

  14. R. Faria, K. Y. Camsari, and S. Datta, IEEE Magn. Lett. 8, 2685358 (2017).

    Article  Google Scholar 

  15. R. Zand, K. Y. Camsari, S. D. Pyle, I. Ahmed, C. H. Kim, and R. F. DeMara, in Proceedings of the 2018 on Great Lakes Symposium on VLSI (ACM, 2018), p. 15.

  16. E. E. Shalygina, A. V. Makarov, A. M. Kharlamova, G. V. Kurlyandskaya, and A. V. Svalov, in Reviews and Short Notes to Nanomeeting-2017:Physics, Chemistry and Application of Nanostructures (2017), p. 89.

    Google Scholar 

  17. Iu. A. Iusipova, Semiconductors 52, 1982 (2018).

    Article  ADS  Google Scholar 

  18. Iu. A. Iusipova, Semiconductors 53, 2029 (2019).

    Article  ADS  Google Scholar 

  19. Iu. A. Iusipova, Izv. Vyssh. Uchebn. Zaved., Elektron. 24, 489 (2019).

    Google Scholar 

  20. R. R. Katti, Proc. IEEE 91, 687 (2003).

    Article  Google Scholar 

  21. E. Y. Tsymbal and I. Žutić, Handbook of Spin Transport and Magnetism (CRC, Boca Raton, 2012).

    Google Scholar 

  22. A. P. Babichev, N. A. Babushkina, and A. M. Bratkovskii, Physical Values, The Handbook, Ed. by I. S. Gri-gor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  23. V. V. Pasynkov and V. S. Sorokin, Electronic Technique Materials, The School-Book for Higher School, 3rd ed. (Lan’, St. Petersburg, 2001) [in Russian].

  24. S. X. Huang, T. Y. Chen, and C. L. Chien, Appl. Phys. Lett. 92, 242509 (2008).

    Article  ADS  Google Scholar 

  25. S. Haykin, Neural Networks and Learning Machines, 3rd ed. (Prentice Hall, 2008).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks N.V. Ostrovskaya for a useful discussion of the problem and a friendly reading of the manuscript, as well as A.S. Mikhmel’ for valuable advice on VLSI technology.

Funding

The work was performed as part of the state task “Research and development of high-performance computing systems and components for them”, code “Vega-St-2021,” internal number 0067-2019-0005, no. 2R AAAA-A19-119043090023-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iu. A. Iusipova.

Ethics declarations

The author declares that she has no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iusipova, I.A. Frequency and Speed of Action of a Spin Valve with Planar Layer Anisotropy. Phys. Solid State 62, 1525–1533 (2020). https://doi.org/10.1134/S1063783420090358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090358

Keywords:

Navigation