Skip to main content
Log in

Magnetic Field Effects in Optical Harmonics Generation by Excitons

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Mechanisms that are responsible for the optical harmonics generation at exciton transitions are analyzed in several classes of materials. In the cubic GaAs semiconductor, the magneto-induced optical second-harmonic generation second optical harmonic is observed in the region of orbital quantization of the valence and conduction bands. An unusually strong amplitude of the optical third-harmonic generation in an external magnetic field in the region of 1s exciton due to exciton–polariton resonance is found. The optical second-harmonic generation due to 1s, 2s, and 2p exciton resonances in a magnetic field is revealed in a hexagonal wide band-gap ZnO semiconductor. Depending on the symmetry of the exciton states, the mechanisms of the optical second-harmonic generation involve the spin and orbital Zeeman effects, and the magneto-Stark effect. The magneto-induced contribution to second harmonic generation (SHG) in the region of exciton transitions in the Cr2O3 antiferromagnet placed in an external magnetic field is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

    Google Scholar 

  2. F. J. Kahn, P. Pershan, and J. Remeika, Phys. Rev. 186, 891 (1969).

    ADS  Google Scholar 

  3. J. Ferré and G. A. Gehring, Rep. Prog. Phys. 47, 513 (1984).

    ADS  Google Scholar 

  4. A. K. Zvezdin and V. A. Kotov, Modern Magnetooptics and Magnetooptical Materials (CRC, Taylor and Francis Group, Boca Raton, 1997).

    Google Scholar 

  5. K. Postava, D. Hrabovský, J. Pištora, A. R. Fert, S. Višovský, and T. Yamaguchi, J. Appl. Phys. 91, 7293 (2002).

    ADS  Google Scholar 

  6. Nonlinear Optics in Metals, Ed. K. H. Bennemann (Clarendon, Oxford, 1998).

    Google Scholar 

  7. V. N. Gridnev, V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 63, 184407 (2001).

    ADS  Google Scholar 

  8. O. A. Aktsipetrov, T. V. Murzina, E. M. Kim, R. V. Kapra, and A. A. Fedyanin, J. Opt. Soc. Am. B 22, 138 (2005).

    ADS  Google Scholar 

  9. M. Fiebig, V. V. Pavlov, and R. V. Pisarev, J. Opt. Soc. Am. B 22, 96 (2005).

    ADS  Google Scholar 

  10. J. Nordlander, G. de Luca, N. Strkalj, M. Fiebig, and M. Trassin, Appl. Sci. 8, 570 (2018).

    Google Scholar 

  11. M. Fiebig, D. Fröhlich, K. Kohn, St. Leute, Th. Lottermoser, V. V. Pavlov, and R. V. Pisarev, Phys. Rev. Lett. 84, 5620 (2000).

    ADS  Google Scholar 

  12. S.-W. Cheong, M. Fiebig, W. Wu, L. Chapon, and V. Kiryukhin, NPJ Quant. Mater. 5, 3 (2020).

    Google Scholar 

  13. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, Rev. Sci. Instrum. 80, 081101 (2009).

    ADS  Google Scholar 

  14. D. R. Yakovlev, V. V. Pavlov, A. V. Rodina, R. V. Pisarev, J. Mund, W. Warkentin, and M. Bayer, Phys. Solid State 60, 1471 (2018).

    ADS  Google Scholar 

  15. J. Frenkel, Phys. Rev. 37, 1276 (1931).

    ADS  Google Scholar 

  16. G. H. Wannier, Phys. Rev. 52, 191 (1937).

    ADS  Google Scholar 

  17. N. F. Mott, Trans. Farad. Soc. 34, 500 (1938).

    Google Scholar 

  18. E. F. Gross and N. A. Karryev, Dokl. Akad. Nauk SSSR 84, 471 (1952).

    Google Scholar 

  19. A.-M. Janner, R. Eder, B. Koopmans, H. T. Jonkman, and G. A. Sawatzky, Phys. Rev. B 52, 17158 (1995).

    ADS  Google Scholar 

  20. M. Y. Shen, S. Koyama, M. Saito, and T. Goto, Phys. Rev. B 53, 13477 (1996).

    ADS  Google Scholar 

  21. J. Mund, D. Fröhlich, D. R. Yakovlev, and M. Bayer, Phys. Rev. B 98, 085203 (2018).

    ADS  Google Scholar 

  22. Y. Li, Y. Rao, K. F. Mak, Y. You, S. Wang, C. R. Dean, and T. F. Heinz, Nano Lett. 13, 3329 (2013).

    ADS  Google Scholar 

  23. G. Wang, X. Marie, I. Gerber, T. Amand, D. Lagarde, L. Bouet, M. Vidal, A. Balocchi, and B. Urbaszek, Phys. Rev. Lett. 114, 097403 (2015).

    ADS  Google Scholar 

  24. Z. Sun, Y. Yi, T. Song, G. Clark, B. Huang, Y. Shan, S. Wu, D. Huang, C. Gao, Z. Chen, M. McGuire, T. Cao, D. Xiao, W.-T. Liu, W. Yao, X. Xu, and S. Wu, Nature (London, U.K.) 572, 497 (2019).

    ADS  Google Scholar 

  25. V. V. Pavlov, A. M. Kalashnikova, R. V. Pisarev, I. Sänger, D. R. Yakovlev, and M. Bayer, Phys. Rev. Lett. 94, 157404 (2005).

    ADS  Google Scholar 

  26. I. Sänger, D. R. Yakovlev, B. Kaminski, R. V. Pisarev, V. V. Pavlov, and M. Bayer, Phys. Rev. B 74, 165208 (2006).

    ADS  Google Scholar 

  27. M. Lafrentz, D. Brunne, A. V. Rodina, V. V. Pavlov, R. V. Pisarev, D. R. Yakovlev, A. Bakin, and M. Bayer, Phys. Rev. B 88, 235207 (2013).

    ADS  Google Scholar 

  28. A. Farenbruch, J. Mund, D. Fröhlich, D. R. Yakovlev, M. Bayer, M. A. Semina, and M. M. Glazov, Phys. Rev. B 101, 115201 (2020).

    ADS  Google Scholar 

  29. V. V. Pavlov, A. M. Kalashnikova, R. V. Pisarev, I. Sänger, D. R. Yakovlev, and M. Bayer, J. Opt. Soc. Am. B 22, 168 (2005).

    ADS  Google Scholar 

  30. B. Kaminski, M. Lafrentz, R. V. Pisarev, D. R. Yakovlev, V. V. Pavlov, V. A. Lukoshkin, A. B. Henriques, G. Springholz, G. Bauer, E. Abramof, P. H. O. Rappl, and M. Bayer, Phys. Rev. Lett. 103, 057203 (2009).

    ADS  Google Scholar 

  31. B. Kaminski, M. Lafrentz, R. V. Pisarev, D. R. Yakovlev, V. V. Pavlov, V. A. Lukoshkin, A. B. Henriques, G. Springholz, G. Bauer, E. Abramof, P. H. O. Rappl, and M. Bayer, Phys. Rev. B 81, 155201 (2010).

    ADS  Google Scholar 

  32. S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, Nano Lett. 16, 5426 (2016).

    ADS  Google Scholar 

  33. L. Chang, A. Boes, X. Guo, D. T. Spencer, M. J. Kennedy, J. D. Peters, N. Volet, J. Chiles, A. Kowligy, N. Nader, D. D. Hickstein, E. J. Stanton, S. A. Diddams, S. B. Papp, and J. E. Bowers, Laser Photon. Rev. 12, 1800149 (2018).

    ADS  Google Scholar 

  34. L. Xu, G. Saerens, M. Timofeeva, D. A. Smirnova, I. Volkovskaya, M. Lysevych, R. Camacho-Morales, M. Cai, K. Z. Kamali, L. Huang, F. Karouta, H. H. Tan, C. Jagadish, A. E. Miroshnichenko, R. Grange, D. N. Neshev, and M. Rahmani, ACS Nano 14, 1379 (2020).

    Google Scholar 

  35. R. R. Birss, Symmetry and Magnetism (North-Holland, Amsterdam, 1966).

    Google Scholar 

  36. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).

  37. W. Warkentin, J. Mund, D. R. Yakovlev, V. V. Pavlov, R. V. Pisarev, A. V. Rodina, M. A. Semina, M. M. Glazov, E. L. Ivchenko, and M. Bayer, Phys. Rev. B 98, 075204 (2018).

    ADS  Google Scholar 

  38. E. Bringuier, A. Bourdon, N. Piccioli, and A. Chevy, Phys. Rev. B 49, 16971 (1994).

    ADS  Google Scholar 

  39. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, J. Appl. Phys. 94, 6447 (2003).

    ADS  Google Scholar 

  40. T. Godde, M. M. Glazov, I. A. Akimov, D. R. Yakovlev, H. Mariette, and M. Bayer, Phys. Rev. B 88, 155203 (2013).

    ADS  Google Scholar 

  41. R. W. Boyd, Nonlinear Optics (Academic/Elsevier, Burlington, 2008).

    Google Scholar 

  42. C. Klingshirn, Phys. Status Solidi B 244, 3027 (2007).

    ADS  Google Scholar 

  43. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doǧan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    ADS  Google Scholar 

  44. M. Lafrentz, D. Brunne, B. Kaminski, V. V. Pavlov, A. V. Rodina, R. V. Pisarev, D. R. Yakovlev, A. Bakin, and M. Bayer, Phys. Rev. Lett. 110, 116402 (2013).

    ADS  Google Scholar 

  45. M. Cobet, Ch. Cobet, M. R. Wagner, N. Esser, Ch. Thomsen, and A. Hoffmann, Appl. Phys. Lett. 96, 031904 (2010).

    ADS  Google Scholar 

  46. I. E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1960).

    MathSciNet  Google Scholar 

  47. D. N. Astrov, Sov. Phys. JETP 11, 708 (1960).

    Google Scholar 

  48. T. Kosub, M. Kopte, R. Hühne, P. Appel, B. Shields, P. Maletinsky, R. Hübner, M. O. Liedke, J. Fassbender, O. G. Schmidt, and D. Makarov, Nat. Commun. 8, 13985 (2017).

    ADS  Google Scholar 

  49. R. M. Macfarlane and J. W. Allen, Phys. Rev. B 4, 3054 (1971).

    ADS  Google Scholar 

  50. M. Fiebig, D. Fröhlich, B. B. Krichevtsov, and R. V. Pi-sarev, Phys. Rev. Lett. 73, 2127 (1994).

    ADS  Google Scholar 

  51. J. P. van der Ziel, Phys. Rev. 161, 483 (1967).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author expresses his gratitude to I. Sänger, M. Laf-rentz, D. Brunne, B. Kaminski, W. Warkentin, and J. Mund (Technische Universität Dortmund, Dortmund, Germany), D.R. Yakovlev and M. Bayer (Technische Universität Dortmund, Dortmund, Germany and Ioffe Institute, St. Petersburg, Russia), and R.V. Pisarev, A.M. Kalashnikova, A.V. Rodina, M.A. Semina, M.M. Glazov, and E.L. Ivchenko (Ioffe Institute, St. Petersburg, Russia).

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-52-12063), DFG-TRR16 (C8), and program no. 5 of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pavlov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, V.V. Magnetic Field Effects in Optical Harmonics Generation by Excitons. Phys. Solid State 62, 1624–1632 (2020). https://doi.org/10.1134/S1063783420090243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090243

Keywords:

Navigation