Skip to main content
Log in

Memristors Based on Nanoscale Layers LiNbO3 and (Co40Fe40B20)x(LiNbO3)100 – x

  • SURFACE PHYSICS AND THIN FILMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The memristive properties of layered capacitor structures based on a (Co40Fe40B20)x(LiNbO3)100 – x nanocomposite and LiNbO3 with thicknesses of 10 and 40 nm, respectively, are studied. There was a sharp transition from a single-filament to multi-filament resistive switching mechanism observed for the first time which appeared with an increase in an amount of the metal phase in the nanocomposite; this mechanism is explained within a model proposed previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    Article  ADS  Google Scholar 

  2. J. del Valle, J. G. Ramírez, M. J. Rozenberg, and I. K. Schuller, J. Appl. Phys. 124, 211101 (2018).

    Article  Google Scholar 

  3. Q. Xia and J. J. Yang, Nat. Mater. 18, 309 (2019).

    Article  ADS  Google Scholar 

  4. M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, Nat. Mater. 12, 114 (2013).

    Article  ADS  Google Scholar 

  5. M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, K. Likharev, and D. B. Strukov, Sci. Rep. 6, 21331 (2016).

    Article  ADS  Google Scholar 

  6. M. Chu, B. Kim, S. Park, H. Hwang, M. Jeon, B. H. Lee, and B. G. Lee, IEEE Trans. Ind. Electron. 62, 2410 (2015).

    Article  Google Scholar 

  7. Z. Wang, S. Joshi, S. Savel’ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo, H. Jiang, P. Lin, C. Li, J. H. Yoon, N. K. Upadhyay, et al., Nat. Electron. 1, 137 (2018).

    Article  Google Scholar 

  8. Z. Wang, C. Li, W. Song, M. Rao, D. Belkin, Y. Li, P. Yan, H. Jiang, P. Lin, M. Hu, J. P. Strachan, N. Ge, M. Barnell, Q. Wu, A. G. Barto, Q. Qiu, R. S. Williams, Q. Xia, and J. J. Yang, Nat. Electron. 2 (2019).

  9. F. Merrikh-Bayat, M. Prezioso, B. Chakrabarti, H. Nili, I. Kataeva, and D. B. Strukov, Nat. Commun. 9, 2331 (2018).

    Article  ADS  Google Scholar 

  10. I. N. Antonov, A. I. Belov, A. N. Mikhaylov, O. A. Morozov, and P. E. Ovchinnikov, J. Commun. Technol. Electron. 63, 950 (2018).

    Article  Google Scholar 

  11. E. O. Neftci, B. U. Pedroni, S. Joshi, M. Al-Shedivat, and G. Cauwenberghs, Front. Neurosci. 10, 241 (2016).

    Article  Google Scholar 

  12. F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, and W. D. Lu, Nat. Electron. 2, 290 (2019).

    Article  Google Scholar 

  13. A. A. Minnekhanov, A. V. Emelyanov, D. A. Lapkin, K. E. Nikiruy, B. S. Shvetsov, A. A. Nesmelov, V. V. Rylkov, V. A. Demin, and V. V. Erokhin, Sci. Rep. 9, 10800 (2019).

    Article  ADS  Google Scholar 

  14. B. J. Choi, A. C. Torrezan, K. J. Norris, F. Miao, J. P. Strachan, M. X. Zhang, D. A. A. Ohlberg, N. P. Kobayashi, J. J. Yang, and R. S. Williams, Nano Lett. 13, 3213 (2013).

    Article  ADS  Google Scholar 

  15. V. A. Levanov, A. V. Emel’yanov, V. A. Demin, K. E. Nikirui, A. V. Sitnikov, S. N. Nikolaev, A. S. Vedeneev, Yu. E. Kalinin, and V. V. Ryl’kov, J. Commun. Technol. Electron. 63, 491 (2018).

    Article  Google Scholar 

  16. V. V. Rylkov, S. N. Nikolaev, V. A. Demin, A. V. Emelyanov, A. V. Sitnikov, K. E. Nikiruy, V. A. Levanov, M. Yu. Presnyakov, A. N. Taldenkov, A. L. Vasiliev, K. Yu. Chernoglazov, A. S. Vedeneev, Yu. E. Kalinin, A. B. Granovsky, V. V. Tugushev, and A. S. Bugaev, J. Exp. Theor. Phys. 126, 353 (2018).

    Article  ADS  Google Scholar 

  17. K. E. Nikiruy, A. V. Emelyanov, V. A. Demin, A. V. Sitnikov, A. A. Minnekhanov, V. V. Rylkov, P. K. Kashkarov, and M. V. Kovalchuk, AIP Adv. 9, 065116 (2019).

    Article  ADS  Google Scholar 

  18. A. V. Emelyanov, K. E. Nikiruy, A. V. Serenko, A. V. Sitnikov, M. Y. Presnyakov, R. B. Rybka, A. G. Sboev, V. V. Rylkov, P. K. Kashkarov, M. V. Kovalchuk, and V. A. Demin, Nanotechnology 31, 045201 (2020).

    Article  ADS  Google Scholar 

  19. M. N. Martyshov, A. V. Emelyanov, V. A. Demin, A. A. Minnekhanov, S. N. Nikolaev, K. E. Nikiruy, A.  V. Ovcharov, M. Y. Presnyakov, A. V. Sitnikov, A. L. Vasiliev, P. A. Forsh, A. B. Granovskiy, P. K. Kashkarov, M. V. Kovalchuk, and V. V. Rylkov, arxiv: 1912.03726 (2019).

  20. A. S. Vedeneev, V. V. Rylkov, K. S. Napolskii, A. P. Leontiev, A. A. Klimenko, A. M. Kozlov, V. A. Luzanov, S. N. Nikolaev, M. P. Temiryazeva, and A. S. Bugaev, JETP Lett. 106, 411 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (no. 18-79-10253) on the equipment of the Resource Center at the “Kurchatov Institute” Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Nikiruy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiruy, K.E., Iliasov, A.I., Emelyanov, A.V. et al. Memristors Based on Nanoscale Layers LiNbO3 and (Co40Fe40B20)x(LiNbO3)100 – x . Phys. Solid State 62, 1732–1735 (2020). https://doi.org/10.1134/S1063783420090218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090218

Keywords:

Navigation